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ABSTRACT
ANALYSIS AND TESTING OF PLATES WITH PIEZOELECTRIC
SENSORS AND ACTUATORS

Jeffrey S. Bevan
Old Dominion University, 1997
Director: Dr. Chuh Mei

Piezoelectric material inherently possesses coupling between electrostatics and
structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically
coupled pair of piezoelectric constitutive equations. One set describes the direct
piezoelectric effect, where strains produce an electric field, and the other set describes the
converse effect, where an applied electrical field produces strain. The purpose of this
study is to compare the finite element analysis and experiments of a thin plate with
bonded piezoelectric material.

Since an isotropic plate in combination with a thin piezoelectric layer constitutes a
laminated composite, the classical laminate plate theory is used in the formulation to
accommodate generic laminated compoSite panels with multiple bonded and embedded
piezoelectric layers. Additionally, the von Karman large deflection plate theory is
incorporated in the stress-strain relations of the laminate. The formulation results in
laminate constitutive equations that are amenable to the inclusion of the piezoelectric
constitutive equations, yielding a fully coupled electrical-structural composite laminate.

Using the finite element formulation, the governing differential equations of motion
of a composite laminate with embedded piezoelectric layers are determined. The finite
element model (FEM) not only considers structural nodal degrees of freedom (d.o.f.) but

an additional electrical d.o.f. for each piezoelectric layer.



Comparison is performed by treating the piezoelectric first as a sensor, and then again
as an actuator. To assess the piezoelectric layer as a sensor, uniformly distributed
pressure loads were applied and the corresponding generated voltages were determined
using both linear and nonlinear finite element analyses. Experiments were carried out by
applying the same uniform distributed loads and measuring the resulting generated
voltages and corresponding maximum plate deflections. It is found that a highly
nonlinear relation exists between maximum deflection and voltage versus pressure
loading.

The dynamic sensor was evaluated by comparing the predicted sensor voltage with
the experimental voltage due to a sinusoidal point excitation. In order to assess
piezoelectric actuation, a sinusoidal excitation voltage was applied and the center plate
deflection was measured experimentally and compared to the predicted displacement.
The plate deflection, as a function of time, was determined using the linear finite element

analysis.
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FOREWORD

The research résults contained herein partially fulfill the requirements of NASA
research grant NAG1-1684, entitled "Experimental and Numerical Analysis of Structural
Acoustic Control for Interior Noise Reduction." This Masters of Science thesis prepared
by Jeffrey S. Bevan under the guidance of Professor Chuh Mei of Old Dominion
University, Aerospace Engineering Department, constitutes the research results contained
herein. The report presents a coupled electrical-structural finite element formulation,
finite element analysis, and experimental results of a panel with a bonded piezoelectric
sensor and actuator. The Aerospace Engineering Department, Old Dominion University
and Langley Research Center Structural Acoustic Branch both provided computational
and experimental facilities required to complete the research study. Mr. Travis L. Turner

of Langley Research Center Structural Acoustic Branch was the technical monitor.
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CHAPTERI1
INTRODUCTION
1.1 Historical Perspective

The piezoelectric effect was first identified in 1880 by Pierre and Jaques Curie [1] and
has remained an active research topic ever since. The Curie's discovered the direct
piezoelectric effect by placing a weight upon a crystal and observing that a charge
proportional to the weight was generated. Shortly thereafter they confirmed the converse
piezoelectric effect by observing an induced strain resulted when a voltage was applied to
the crystal. Hence the term piezoelectricity, meaning pressure electricity, was coined to
describe this phenomenon. Piezoelectricity remained somewhat of a scientific curiosity
since the complexity of the coupled electrical and mechanical properties were unknown.
Thus one of the objectives of the earliest research efforts was to better understand the
coupled electrical-structural properties of piezoelectric material and to develop accurate
analytical models to support and direct engineering design applications.

A portion of the mysterious veil was lifted from piezoelectricity during World War 1
when Professor Langevin, under the auspices of the French government, set out to
determine a method to detect submarines [1]. Professor Langevin used piezoelectric
crystals in a device that, when submerged underwater, generated a voltage when a
disturbing wave front would impinge upon it. Conversely when the device was
electrically excited it would vibrate and emit a longitudinal underwater wave. Professor
Langevin was unable to conclude his research until after the war, however his device was
the predecessor of today's modern sonar transducer.

Another early application of piezoelectricity was discrete crystal circuit devices such
as oscillators and filters. The crystal oscillators were extremely stable and were used
extensively in military communication equipment. At one point there were in excess of
30 million crystals in military equipment in one year [1]. The crystal controlled

oscillators resulted from the research efforts of Cady at Weslyan University [1]. Not only



do piezoelectric crystals possess a characteristic stable resonance, they also are extremely
selective, which is indicated by their high mechanical Q values. This sharpness provided
the ability to design extremely discriminate filters, resulting in precision circuitry capable
of separating simultaneous multiplexed conversations over a single pair of wires. It is not
difficult to realize the important role that piezoelectric crystals had in the development of
today's modern telecommunications industry.

Another milestone in understanding piezoelectric phenomena was contributed by
Professor Mindlin. Mindlin began ground breaking analysis on waves and vibrations in
isotropic elastic plates concurrently with high frequency vibration of crystal plates [2].
Subsequent work on isotropic bars and plates lead to unprecedented design and
development of electromechanical filters and discrete time delaying devices. Mindlin's
pioneering papers on crystal plates may be considered the most significant in modern
piezoelectric research, since it clarified the complicated coupled piezoelectric
phenomena, leading the way to improved piezoelectric designs for quartz crystal filters.
Mindlin's research lead to a sole-supplier contract in 1955 from the U.S. Army Signal
Corps, a long time sponsor of the research on crystal plate vibrations, resulting in a
monograph entitled "An Introduction to the Mathematical Theory of Elastic Plates".
Since the application of quartz filters and other circuit devices such as surface acoustic
wave devices, piezoelectric materials have found uses in numerous applications such as
dot-matrix printers, computer keyboards, high-frequency stereo speakers, igniters,
microphones, accelerometers, and various transducers (force, strain, and pressure),
however a new and active research area commonly referred to as smart structures has
become a very popular research topic.

The concept of smart structures is a relatively new and diverse field. The
fundamental core of smart structures integrates sensors and actuators to structural
. elements to obtain a state of desirable static and, or dynamic control [3]. The

development of smart structures has resulted from three recent significant trends [4]. The



first is the increased utilization of traditional laminated composite structures. The
composite material theory incorporates smaller constitutive elements thus permitting the
inclusion of piezoelectric constitutive relations with relative ease. It is not unreasonable
to visualize a structural member consisting of multiple sensors, actuators, and signal
Processors.

The second trend is the consideration of coupling the structural and electrical
properties by utilizing the off-diagonal terms of the constitutive relations. This practice
has been utilized by the large deflection laminated composite theory by including the
coupled bending-extensional laminate stiffness. The third trend is the advanced rate of
growth within the computer science and electrical engineering disciplines. Hardware
improvements such as miniaturization and increased computational power permit faster
and more complex algorithms resulting in greater adaptability of the smart structure.

Even though Mindlin's work transformed piezoelectricity from a state of scientific
curiosity to an applied science, his higher-order theory of wave propagation is not directly
applicable to low frequency structural vibrations of laminated structures. Considering
that the physical geometry dictates that the structural resonances occur several orders of
magnitude below the piezoelectric crystal's natural frequency, linear piezoelectric theory
is exploited where the only electrical and structural interaction arises from the linear
piezoelectric constitutive relations [5].

The governing equations for distributed piezoelectric using linear piezoelectric theory
combined with the classical laminate plate theory was presented by Lee [6]. Sﬁbsequent
research has exploited linear piezoelectric theory for numerous smart structure
applications such as self-sensing piezoelectric actuators [7] and modal analysis using
piezoelectric sensors [8]. The self-sensing piezoelectric actuator results in a truly
collocated sensoriactuator capable of simultaneously measuring a structure's dynamic
response while providing a controlling input. The collocation characteristic provides a

cost benefit by reducing the number of transducers [9]. Furthermore a classical coupled



electrical-structural analysis approach was demonstrated by Lai [10] to control panel
flutter.

The classical analytical solution method of piezoelectric structural analysis has been
extremely useful, however their solutions are restricted to relatively simple geometries
and boundary conditions. Since the finite element method has proved to be a powerful
and popular technique for the analysis of complicated structures and multi-field problems
it may be applied to the coupled electrical-structural piezoelectric system.

Piezoelectric solid finite elements were formulated and applied to transducers and
oscillators by Allik and Hughes [11]. However since smart structures typically consist of
thin piezoelectric layers attached to structures that are several orders of magnitude greater
in thickness, the solid finite element formulation leads to an inherently inefficient process
in which to model the complete physical structure. Thus Tzou and Tseng formulated a
new thin piezoelectric solid finite element coupled to shell and plate finite elements [12].
The intrinsic parasitic shear effects associated with such finite elements were eliminated
by the introduction of internal d.o.f.'s within the piezoelectric plate element.

One such application of the finite element method incorporating piezoelectric sensors
and actuator was presented by Zhou in analyzing and suppressing panel flutter [13]. The
flexibility of the finite element method was demonstrated by Zhou by formulating a
structural, electrical, and thermal coupled analysis resulting in the control and
suppression of panel flutter of composite laminated panels at elevated temperatures.
Zhou provided simulation results for aerodynamically induced large deflections with
multiple embedded piezoceramic actuators for various ply orientations. In addition Zhou
introduced a novel time domain nonlinear solution method by developing a set of forced
Duffing equations in reduced modal coordinates. By introducing the modal
transformation, the number of equations to be solved is greatly reduced thus affording

great computational savings.



1.2 Objective and Outline

Much research has been conducted using linear piezoelectric theory for control in a
variety of structural vibration applications. Both classical analysis and the finite element
method has been utilized. The objective of this research is to compare the fully coupled
electrical-structural finite element analysis of an isotropic panel with a surface mounted
piezoelectric patch to experimental test results.

This thesis is organized as follows. In Chapter I, a historical background and the
objective of this study is presented. Chapter II introduces the piezoelectric phenomena.
In addition, an electrical equivalent model and the coupled linear piezoelectric
constitutive relations are introduced. Chapter III presents the finite element formulation,
including the fully coupled electrical-structural constitutive relations. An effort has been
made to develop the most general formulation applicable to laminated composite plates.
To this end, the von Karman large deflection theory was incorporated, based on the
results obtained from the experiments conducted. The finite element formulation is then
modified to accommodate the inclusion of the electrical degree of freedom to satisfy the
electrical-structural coupled linear piezoelectric constitutive relations. Next, the finite
element matrices are derived using Hamilton's principle and the subsequent equations of
motion assembled. Lastly, solution procedures for the static and dynamic sensor and
dynamic actuator are presented. Chapter IV presents the experimental aspects and the
test plate clamping fixture design. The fixture design specifications and boundary
conditions are discussed along with the applied loading procedures. In addition a
discussion of piezoelectric wafer preparation and mounting is presented. Chapter V
presents and compares the predicted and experimental results. Comparison of the results
obtained from test and analysis of a quasi-static sensor subjected to uniformly distributed
loading is presented, along with results for a dynamic sensor due to mechanical point
loading and dynamic piezoelectric actuation. Chapter VI provides a discussion of the

results and conclusions.



CHAPTER II
PIEZOELECTRICITY

2.1 Introduction

When a piezoelectric material is subjected to mechanical strains or stresses it gives
rise to an electric polarization, or it simply generates an electric charge. This
phenomenon is referred to as the direct piezoelectric effect. Conversely, a piezoelectric
material will undergo strain when it is electrically polarized, or subjected to an electric
field. This action is referred to as the converse or reciprocal piezoelectric effect. It is
important to note that piezoelectric materials are polarized such that elastic deformation
depends on the sign and magnitude of the applied electric field. That is to say,
piezoelectric material may undergo either elongation or contraction, simply by reversing
the polarity of the applied electric field. It is this polarization that differentiates
piezoelectricity from electrostriction. Electrostriction is a function of the square of the
electric field, thus sign independent [14]. Since piezoelectric materials exhibit both direct
and reciprocal effects the same specimen may be implemented as an actuator or sensor, or
both simultaneously [7,15]. The reciprocal effect facilitates actuation and the direct
effect favors sensing of structural vibrations. The piezoelectric effect maintains a linear
relationship between the electrical and mechanical quantities [5]. Thus linear
piezoelectric theory couples quasi-electrostatic field equations with a dynamic structural
system. This quasi-electrostatic approximation is valid since the phase velocities of the
structural vibrations are several orders of magnitude less than the phase velocities of the
electromagnetic waves [5]. The direct and reciprocal piezoelectric property constitutes an
inherent electromechanical coupling that is included in the constitutive relations of the
structural analysis problem considered herein.

As stated in Section 1.1 piezoelectricity was first discovered in the 1800's. The initial
piezoelectric observations utilized naturally occurring crystals such as quartz, tourmaline,

and Rochelle salt. Piezoceramics, a manufactured polarized ferroelectric material, are



commonly used in commercial transducer applications and will be analyzed and tested in
this study.

Even though piezoelectricity is a linear effect, a complex relationship exists between
elastic, mechanical, thermal, and electrical properties. The relationships are shown
schematically in Figure 2.1 [14]. The comers of each of the triangles are functions
representing the E electric field, D electric displacement, O stress, &£ strain, T
temperature, and S entropy. The piezoelectric effect is shown by the left-hand side of
Figure 2.1 indicated by the independent variables d, g, e, and /4 which are the
piezoelectric coefficients, the dielectric permittivity € and impermeability 3, the stiffness
¢ and compliance s. Linear piezoelectric theory assumes constant entropy therefore it is
an adiabatic process, thus mechanical strains do not contribute to the thermodynamic
state of the piezoelectric.

2.2 Electrically Equivalent Piezoelectric Model

The piezoceramic used for this work is in the shape of a thin plate with electroplated
electrodes on the top and bottom surfaces as depicted in Figure 2.2. Physically the
piezoceramic consists of two conductors separated by a dielectric material. Electric
circuit theory calls such a device a capacitor. In circuit theory a capacitor is a passive
device, however the piezoceramic is a polarized ferroelectric material that generates a
charge proportional to strain as dictated by the direct piezoelectric effect. Thus an
electrically equivalent model of the piezoelectric material consists of two charge
generators, a capacitor and a resistor as shown in Figure 2.3 [7]. The charge generators
da> 9p shown in Figure 2.3 represent the applied charge and self-induced charge,
respectively. The resistance Rp is the intrinsic electrical resistance of the dielectric which
in most cases is very large and represents an electrical open circuit condition which
impedes the flow of electric current.

In reference to piezoceramic materials, the applied charge results from an externally

applied voltage, and since the piezoceramic is capacitive, the charge accumulates on the



electrodes. By definition electric current is charge in motion, hence the total current
flowing out of an enclosed volume must equal the loss of charge within the volume. This
is a statement of conservation of charge and leads to the explanation of why current flows
in the leads of a capacitor being charged (or discharged) when no current flows between
the capacitor plates. Since the piezoelectric specimen behaves as a capacitor the current
flow through a piezoelectric by an applied constant voltage is analogous to the charging
or discharging of a capacitor [16]. Current flows across the open circuit plates of a
capacitor since there is an accumulation of charge on the plates. This can be shown by

examination of statement of conservation of charge

4J-da=—% [p.av 2.1)
14

where J is defined as current density, that is current per meter width, p, is the charge

density, and da is the differential area with a unit normal vector.

If the volume enclosing the charge remains constant with respect to time then the time
derivative may be moved into the volume integral thus
§7-da= -] %dV (2.2)
By applying the divergence theorem, the surface integral is converted into a volume
integral so that Eq. (2.2) becomes the time-varying equation of continuity and can be
written as

op
v.y=-Z¢ 2.3
2 23)

If Gauss's law, V-D = p, is substituted into Eq. (2.3) it becomes
7

V-J=-—V-D 2.4
3 24



The electric displacement density D is frequently called flux density, and a more
complete description may be found in Appendix C. Interchanging differentiation with

respect to space and time in Eq. (2.4) yields

D
v-(guj_o 2.5)

Casting Eq. (2.5) in integral form and applying the divergence theorem results in

4(@+Jj-da=o (2.6)

¥73

Hence Eq. (2.6) indicates that the total current of time-varying fields is (é—g +1J \J , where
a

%}J— is a displacement current density due to the time rate of change of the electric

displacement density and J is the current density resulting from the flow of charge. Thus
when considering a capacitor being charged with a direct current, the time varying current
density J is zero due to the open circuit condition, but Eq. (2.6) indicates the existence of

a displacement current density %—;— flowing through the leads of the capacitor being

charged, or the piezoceramic.
2.3 Piezoelectric Constitutive Equations
Electric enthalpy density H describes the amount of energy stored within the
piezoelectric material. Given the electrical-structural coupling of the piezoelectric
material, the electric enthalpy density is the internal coupled strain energy less the stored
electrostatic energy density [17]. The stored electrostatic energy density is analogous to
the structural elastic strain energy. A detailed derivation of the electrostatic energy may

be found in Appendix C. The electric enthalpy density is defined as

H=U-D-E .7)



where U is the strain energy, D and E are the electric displacement density and electric
field, respectively whose product represents the electrostatic energy density. The

enthalpy may be expanded to yield the following relationship

= {eHOT e} - (B [elie} - S {EY [e] &} 3)

so that
o, = Zf (2.9)
D=- glzi (2.10)

where oy, &, are the stress and strain respectively, D, and E; are the electric
displacement and electric field respectively, [Q]E is the stiffness matrix measured at
constant electric field (short circuit), [6]a is the dielectric permittivity matrix measured at
constant strain (clamped), [e] is a matrix of piezoelectric strain constants, and superscript
T represents matrix transpose.

Application of Egs. (2.9) and (2.10) to Eq. (2.8) produces the following coupled

electrical-structural piezoelectric constitutive equations
{o} =101 {e} - [ {E} @.11)

{D}=lele} +[e] {E} (2.12)

Due to practical engineering considerations the piezoelectric strain constants [e] and
clamped permittivity matrix [€]° are not typically available. However, the stress
constants [d ] and the free permittivity matrix [€]” are readily available and are related to

[e] and [€]° by the following relations [12]

[e] =[a]of (2.13)

10



[e] =[eF -[d]oF 4] (2.14)

Thus the piezoelectric constitutive equations can be expressed as
o} =101 (e}~ LaT {£}) (2.15)

{D}=[dffc} +[€]"{E} (2.16)
Furthermore Eq. (2.15) may be substituted into Eq. (2.16) yielding

{D}=[d1OY" (fe} - [a] {E})+ [€]" {E} (2.17)
The following electromagnetic constitutive relation between the electric displacement

density and the electric field may be used to clarify the physical meaning of Eq. (2.17)

(D} =[elE} | (2.18)
Thus Eq. (2.17) can be written as

{E}=[pT [dXo}+ {E} 2.19)
where [B] is the free dielectric impermeability defined by [B]° =[€]°, and {E} is an
externally applied electrical field. Thus the direct piezoelectric effect results in an
electric field comprised of two components or sources; one self-generated as shown in the
first term on the right hand side of Eq. (2.19), and the other due to an externally applied

voltage as shown in the second term of the right hand side of Eq. (2.19).

11



Fig. 2.1 Elastic, thermal, and electrical properties of piezoelectrics
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Fig. 2.2 Physical description of the piezoelectric element
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CHAPTER III
FINITE ELEMENT FORMULATION
3.1 Introduction

The derivation of the governing differential equations of motion for a panel with
embedded piezoelectric layers is introduced in this chapter. The formulation is based on
the classic laminate plate theory, including the plane stress assumption and the von
Karman large deflection theory. The variational . energy method facilitates the
formulation of the linear and nonlinear finite element equations of motion in terms of the
nodal degrees of freedom (d.o.f.) and the fully coupled structural-electrical properties.

3.2 Displacement Functions

The panel with piezoelectric layers shown in Figure 3.1 is modeled using the four-
node modified C1 conforming straight-sided rectangular plate element. Each element
consists of twenty-four structural degrees of freedom. Each node of the element contains
four bending d.o.f.'s and two membrane d.o.f.'s to represent the transverse, or out of plane
and membrane displacements, respectively. A piezoelectric element maintains consistent
structural d.o.f.'s, however an additional electrical d.o.f. is required to satisfy the
electrical coupling. Thus the nodal displacement vector is augmented by adding an
electrical (voltage) d.o.f for each piezoelectric layer present within the element. The
voltage may either be applied to, or generated by the piezoceramic layer or layers. In
essence, the electrical d.o.f.'s can be treated as structural displacements.

The element nodal displacement vector consists of the bending and membrane

displacements and the voltages which can be written as

wh={w, w, wf (3.1)
The bending and membrane displacements of Eq. (3.1) represent the nodal displacements

and are respectively shown as
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T
{Wb} ={W1 W, W; W, W, Wy Wos Wy

oy W

w.

s W w

2

232 s y4 sxyl dxy2 sxy3 > xy4

T
ol =fw w, wy ou, vovy, vy (3.3)
where w represents the transverse deflection, w, ,w,, are the slopes in the x and y

directions respectively, w,_, is the second order twist derivative, # and v are the x and

oxy
y membrane displacements, and the numerical subscript denotes the node number. The

“electrical d.o.f''s represented by {w¢} has voltage components corresponding to each

piezoelectric layer and will be subsequently described in greater detail in Section 3.3.
The continuous bending or transverse displacement is approximated using a cubic

polynomial given as
W=a, +ax+a,y+ax +axy+ay’ +ax’
+a X’y +axy’ +a,y’ + a3’y +a,x’y

3 3.2 2.3 3..3
+a,xXy° +a, XY +ax Y +a Xy (B4

which can be written in compact matrix form as

w=|H, [{a} | (3.5)
Similarly the continuous in-plane displacements # and v are approximated using bilinear

polynomials such as
u=b+bx+by+bxy |

v=>b+bx+by+bxy (3.6)

which can also be written in compact vector notation as

16



u=| H, |ib} (3.7)

v=|H, [{b} (3.8)
The generalized coordinates {a} and {b} maintain a spatial relationship to the nodal
displacements through coordinate transformations and are functions of time only. The

transformation relationship is given by
{a} =[7,w,} 3.9

{6} = [T, fwn} (3.10)

Appendix A provides a comprehensive derivation of the bending and membrane

transformation matrices [T, ], [7,,]. Since the electrical degrees-of-freedom {w¢} vector

represents the voltage per piezoelectric layer and does not possess any preferred
geometrical orientation, coordinate transformation is not required.

The displacement field may be expressed in terms of the nodal d.o.f.'s by substituting

the respective coordinate transformations into the displacement field approximations,

thus substituting Eq. (3.9) into Eq. (3.5) and Eq. (3.10) into Eqgs. (3.7) and (3.8) yields

{w}=LH, [T, }w,} =[B,Jw,} (3.11)
fu} =LH, [T, Kw,} =B, 1w, } (3.12)
o} =4, T, Kw,} = [B,}w,.} (3.13)

where the [B,],[B,] and [B,] matrices are the shape or interpolation function matrices.
3.2.1 Linear Analysis

The majority of the work considered herein is based on the assumption of small
displacements. The strains are therefore comprised of inplane or membrane strains and

bending curvatures as

(e} = {e*}+ z{x} (3.14)

17



which can be expanded as

g & [x
_ 0
&, =3¢, T2k, (3.15)
0
}/xy }/xy ny

where {s°} is the membrane strain vector and {x} is the bending curvature vector. The
membrane strains and curvatures are functions of the inplane and bending displacement

respectively and are defined as

0

£, u,,

et=1{ v, ¢ (3.16)
y 2y .

0

Yy (UsyFVsy |

and

K, —W,,,

K, p=9— Wy, ¢ (3.17)
xy - 2w’xy/

By introducing the approximations for the displacement field as previously defined and

recalling the generalized coordinate relationship, the strain vector can be expressed as

LA, J
=1 17, [Br=I[C,Xp} (3.18)
LH, L, +HH, L.

Similarly the curvature may be expressed in terms of the generalized coordinates as

~LH, b
{c}=1-1H,1, tla}=IC,Ka} (3.19)
- 2l_HwJ’xy

where the matrices [C, ] and [C,] result from the differentiation of the shape functions

with respect to the dependent variables x and y. Thus [C, ] and [C,] are defined as

18



010y 0000
[C,]=[0 0 0 0 0 0 1 x (3.20)
001 x 010 y»
0002006x2y 0 0 6xp 2y 0 62 2 61
[]=40 0 0002 0 0 2x 6y 0 2 6xp 2x 6xy 62y (3.21)
000020 0 4x 4y 0 6x* 8xy 6)° 1%y 12¢/ 18&%7

Expressing the generalized coordinates in terms of the nodal d.o.f's the strain and

curvature vectors may be written as
'} =[c,Ir,Yw,} =[B,Jw.} (3.22)

{c} =[C T, Kw,} = [B, Jw,} (3.23)
where [B, ] and [B, are the strain interpolation matrices. Thus the strains in Eq. (3.14)

can be written in terms of nodal d.o.f.'s as

{e} =B, Kw,} +2[B, {w,} (3.24)

3.2.2 Large Deflection Analysis
The von Karman plate theory is a geometrical nonlinear theory that accounts for
moderately large deflections and small rotations of the mid-surface of the plate. Thus the

von Karman large deflection strain-displacement relations are defined as

{e} = {&°}+ z{x} (3.25)
where

e} ={ent+ie0) (3.26)
Hence {} is identical to the previously defined membrane strains {¢°}, and {3} is the
membrane strains induced by the large transverse deflection. The strain-displacement

relations for moderately large displacements is defined as
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£ u w,2

x >x ’x

_ w’.x.x

1 2
E,p=1 Vs, +Ty W, +29 = W,, (3.27)
-~ Uy, +v,, 2w, w,, -2w,,,

In future derivations it will become apparent that it is convenient to express the large

deflection strain in terms of the slope matrix and slope vector as

{eg}= %[9]{6’} (3.28)

where the slope matrix and vector elements are the derivatives of the transverse

displacement function. Thus the slope matrix and vector are defined respectively as

w’x
[6]=| 0 (3.29)
W

w,

X

6} = {::} (3.30)

Utilizing the definition of the slope matrix and vector of Egs. (3.29-30), the strain due to
large deflections may be expressed in terms of the generalized coordinates. Recognizing
that the slope vector is the derivative of the bending shape functions, Eq. (3.28) becomes
H,]
)= 2ol 5 it = S1odc e 631
o I_H w _L y

where [C,] results from the indicated differentiation and is given as

01 0 2x y 0 3x* 2x
[Ca ] = 2
001 0 x 2y 0 «x

0 3y 2 Y Wy 2 3 (3.32)
2y 3y ¥ 2%y 3mF 20y WY 3
Employing the coordinate transformation, the membrane strains can be expressed in

terms of the nodal d.o.f.'s as
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{25} = S IO1C, I8 Yo} = S 1608, ow GED)

Hence the strain-displacement relations described in Eq. (3.24) can be written in terms of

the nodal d.o.f's as

{e}=[B,lw.} + %[9][39 Kw,}+ 2B, w,} (3.34)

3.3 Electric Field and Electric Displacement Density
In Section 3.2 the nodal displacement vector included a term described as the electrical
degrees of freedom. The most general composite piezoelectric element may consist of
many piezoelectric layers embedded within a laminated composite panel resulting in a
electrical d.o.f. vector which contains an applied (or measured) voltage corresponding to

each piezoelectric layer. The electrical d.o.f.'s can therefore be expressed as

=t v 7Y (3.35)
where np represents the number of piezoelectric layers presents.

The electrode of the piezoelectric layer establishes an equipotential boundary
condition and the dielectric permittivity is assumed isotropic. The voltage esiablishes a
linear electric displacement density and electric field through the thickness of the

piezoelectric material. The electric field strength is the negative of the voltage or

potential gradient, and is defined as

E=-VV (3.36)
The piezoelectric material considered for this study is a thin rectangular plate and

assumed to be isotropic, thus the stress/charge constants simplify to dj; =d,,. Since the

electrodes are on the top and bottom of the piezoelectric plate, polarization occurs only in

the 3-direction. The stress/charge constant d,, is assumed to be constant throughout the

thickness which results in an electric field in the 3-direction only. A detailed explanation
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of the stress/charge relations is provided in Appendix B. The total electric field due to all

of the piezoelectric layers can therefore be expressed as
(B} =~{B,Jw,} (337
where the matrix [B¢] is a diagonal matrix with elements consisting of the reciprocal of

the thickness of each piezoelectric layer. Thus [B¢] may be written as

% 0
8,]=] : 1 (3.38)
0 —_

where np represents the number of piezoelectric layers present.
Summarizing the above results, the generalized strain-displacement relations based on

the small defection assumption can be obtained by combining Egs. (3.24) and (3.37) as

W,

oo e

Wy

Similarly, for large deflections, Eq. (3.39) can be modified by including the large
deflection strain of Eq. (3.34) yielding

b

o[ |48+ 20618 8] o ||
M [ z J

] (3.40)
o -1

N

Since the electric displacement density is assumed to be generated along the polarization
axis only (3-direction), Eq. (2.17) can be reduced to

D, =|d [0]{e} - E;{d}) + €5 E; (3.41)
where the appropriate strain may be employed. The stress/charge coefficients {d} are
expressed as a vector, due to the geometrical assumptions made during the transformation

of the piezoelectric constants described in Appendix B.
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3.4 Constitutive Equations
The finite element equations of motion for the plate element used will be derived
using classical laminate plate theory (CLPT). The CLPT is used, since in the simplest
case a piezoceramic patch bonded to an isotropic substrate constitutes a laminate. In the
most general case, a laminated composite element will consist of a typical lay-up with a
number of alternating piezoelectric layers. A typical laminated composite with embedded
piezoelectric layers is shown in Figure 3.2. A typical isotropic panel with symmetrically
bonded surface piezoceramic patches is shown in Figure 3.3. The CLPT assumes that the
piezoelectric is perfectly bonded and that each lamina is in a state of plane stress. For the
thin plate considered, the rotary inertia and transverse shear deformation effects are
assumed negligible.
The stress-strain relations of a specially orthotropic composite lamina and a
piezoceramic layer is [18]
! O, G, O &

o0 =G, On O & (3.42)
Tl 0 0 Ol V2

and
o, O, @, O & dy
o,y =|0, On O & —E;,9dx (3.43)
T2}, 0 0 Oxl !\l 0],

where the subscripts s and p indicate the structural and piezoelectric lamina respectively.
The piezoelectric material considered is assumed to be isotropic in the /- and 2-
directions therefore d3j=d3). The polarization axis of the piezoceramic is assumed to be
such that a positive strain or elongation in the /- and 2-directions results from a "positive"
applied voltage referenced to the electrode bonded to the plate.

The stress-strain relations for the £” layer of a laminated composite is obtained by

combining Egs. (3.42) and (3.43) are
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O, _Q_ju —g—lz g6 g, d,
O =|Q2 Qn Qi |18 =By, (3.44)
Tyl Q6 Qi Des )\ [V dy ),

where the transformed reduced lamina stiffness matrix [@ L is developed from the
transformation of the principle material coordinates with respect to the global
coordinates, similar transformations exist for the stress, strain, and the stress/charge
constants. Appendix B provides a comprehensive derivation of the required principal
material coordinate transformations.

For a general orthotropic piezoelectric layer, the generated electric displacement

density along the polarization axis (3-direction) for the k” layer may be written as

gll _§_12 gs &x d,
Dy=|d, d, d,}|0: Ou Ou||{& (= Euid,; |+€nBs (349
O Qi Des AL dy)y

Egs. (3.44-45) may be condensed in matrix form as
(o} = [0l (e} - Exlaly) (3.46)

D, ={d }: [§]I< (e} - Esi{d}) + €5, Es, (3.47)
where [§ ]k and {d}, are the lamina stiffness and stress/charge constants respectively for

the kth piezoelectric layer and are transformed to the global x,y coordinates. For a

composite lamina without a piezoelectric layer, set E,, ={d}, =0.
3.5 Equations of Motion
3.5.1 Generalized Hamilton's Principle
Finite element equations of motion for the laminated composite panel with fully

coupled electrical-structural properties are derived utilizing the generalized Hamilton's

principle [19] to obtain
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[(6@-U+w,-w,+Wyr=0 (3.48)

where T and U are the kinetic energy and strain energy of the system, #, is the electrical

energy, W, is the magnetic energy, and W is the work done due to external forces and

m

applied electric field. The magnetic energy is negligible for piezoceramic materials if no
external magnetic fields are located near the specimen. The kinetic energy of plate
element is defined as

r= | —;—p({W}T{W} )+ Y e (3.49)

¥

where W, 1, and v are the transverse and membrane velocity components and p is the
mass per unit volume, and — is the volume of the element. The potential and electrical

energies are defined as

U= ;ﬁ_ (e} {o)a¥ (3.50)

W, = .[%{E}T{D}dV (3.51)
V
and the work done on the element by external sources is defined as

W= [tw) {FJa¥ + [} {F.)dS + (W} {E} - [Vp.dS (3.52)

5y
where {F,} is the body force vector, {F,} the surface traction vector, {F,} is the
concentrated loading vector, S, is the surface area of the applied traction, S, is the surface
area of the piezoelectric material, ¥ is the voltage applied to the piezoelectric, and p,, is
the surface charge density generated by the piezoelectric effect. The electrostatic energy
results from the charging process of the equivalent piezoelectric capacitance, as described
in Appendix C. In Hamilton's principle, all variations must vanish at the time # =1 and

t =t,. The Hamilton's variational statement may be written in the most general form as
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[Tl i + {6 (i} + {69} 1)
— {85} {0} + {6E) (D} + (6w} {F, Y w
+ [{ow}" {F}ds - [oVp..as +{ow {F.} =0 (3.53)

Evaluation of Eq. (3.53) leads to the development of the finite element matrices and the
elemental equations of motions.
3.5.2 Resultant Forces and Moments

The stresses of each individual lamina are not necessarily equal, therefore Eq. (3.44)
is not directly applicable since the curvatures are typically unknown and are very difficult
if not impossible to measure experimentally. However the inplane strains and curvatures
of Eq. (3.44) can be related to the applied forces and moments through the static
equilibrium conditions thus making Eq. (3.44) more useful [18]. When working with
laminated composite plates, it is however very convenient to consider the forces and
moments per unit length. Such forces and moments are commonly referred to as the
stress resultants. The stress resultants are determined by substituting Eq. (3.44) into the

following integral

(.00 = [% o} () (3.54)

Substituting Eqn. (3.34) for the Kth layer stresses in the above equation and performing

the necessary integration leads to the stress resultants of a composite laminate panel as

N Al [BI1(&° N
{ }{[ Iy ﬂg 7 (3.55)
w7 \i8) (o)) 1,
where [4], [B], and [D are the extensional, coupling and bending stiffness matrices of

the laminate, respectively, which for an n-layer laminate are defined as

[4]=3[0] G - 2) (3.56)

k=1
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(21-32[0] (.- %) 657
k=1 k
[p}=3 310 (2. - ) (:59)

The force and moment vectors resulting from the piezoelectric effect are defined as

(v, }{a, )= f@[@L{d}kEak(l,z)dz (3.59)

3.5.3  Stress Resultants for Small Deflections

The piezoelectric force and moment vectors will be subsequently examined in much
greater detail in Section 3.5.5. Nevertheless, the overall force resultant vector may be
expressed in terms of the nodal d.o.f's, and are given here for the linear small

displacement approximation as
(N} =[4IC, IT, Yw, } + [BIC, 17, Y, } - N, }
= [41B, }w,} +[BIB, Jw,} - (v}

= {N,}+{N,}-{,} (3.60)
Similarly the resultant moment vector may also be expressed in terms of the nodal d.o.f.'s

as

{M} = [BIC, IT, Jw,} + [DIC, 1T, Yo, } - {0, }
= [BIB, Yw,} +[DIB, w,} - {a,}

={M,}+{M,}-{M,} (3.61)
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3.5.4  Stress Resultants for Large Deflection
The von Karman large deflection strain-displacement relations of Eq. (3.34) are

substituted into Eq. (3.55) to determine the resultant force vector, hence

{7} = [4Hen }+ [4les}+ [BYoc} - ()
= [AIC, 17, Jow, }+ S ATOTC, I, Jom
+[BIG,IT, Yow,} ~ N,
= [ALB, o+ [ATOTB, Yo}

+[BIB, Jw,} - {N, }

={N, }+{N;}+{N,}-{V,} (3.62)

Similarly the resultant moment vector may be determined as
{i7}= [BYen }+ [BYed}+ [P} - )
= [B1C, X7, Jow,} + S [BI61C, 17 o)
+[DIC, 15 Yoo } - {11, }
= (B18,Jou.} + < {BTOTB, Jou} + (DB, Jou} - 1}

= {M,}+ (M, }+{M,} - {M, ) (3.63)
Comparing Egs. (3.62) and (3.63) with Egs. (3.60) and (3.61), the resultant stress {N,}

and {M,} are the components due to large deflections.
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355 Piezoelectric Resultant Forces and Moments
Since each piezoelectric layer contributes to the total force resultant vector a
summation over the range of np piezoelectric layers must be incorporated to account for

each piezoelectric layer. Thus the piezoelectric force resultant vector is defined as

T+l

=3[ o] @) B 364

The lamina stiffness [0 ], stress/charge constants {d}, and the electric field {E,} remain

constant for each piezoelectric layer with respect to the 3-direction and are also assumed

to be isotropic in the /- and 2- direction, thus the indicated integration reduces to

=[oliann - [oliann - [0]{a},h,]ED (3.65)
Furthermore Eq. (3.37) may be substituted for {£,} producing
w=-lelan - [olann - [0l ia),n,08,Jw}  (.66)

N, }=-{P, 1B, w, } (3.67)

where
[PN]=|I§]1{d}1hl [é]k{d}khk [a]np{d}nphnp] (3.68)

Similarly the piezoelectric moment resultant may be expressed as

{M,} =R, 18, Jw,} (3.69)
where

P <[ 2ol +2) - SOLah e +a) -

%[Q:Lp {d}np hnp (an+1 + an):l (370)
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3.6 Element Matrices

3.6.1 Introduction

Evaluating the terms in the Hamilton's variational statement of Eq. (3.53) results in
the finite element matrices. Vériation of the potential and kinetic energies leads to the
development of the element stiffness and mass matrices, respectively. During this
investigation, body and concentrated forces are neglected.
3.6.2 Linear Stiffness Matrices

The finite element linear stiffness matrices will be determined first by evaluating the
potential energy terms of Hamilton's variational statement Eq. (3.53). Thus the potential
and electrical energy terms for the kth layer of Eq. (3.53) may be expressed as

({66} {0} - (6B} {D})a¥

124

= Aj[ [{2({580}T +z{5K}T){0'}kdz— fé(&E% )DBkdszA (3.71)

where the first integrand represents the strain energy and the second integrand represents
the electrical energy due to the polarization properties of the piezoelectric in the 3-
direction only. Thus by applying the stress resultants of Eq. (3.54), the variational energy
becomes

j[{a‘e"}T {N}+ {6} {M} - ffA (6E,, )D3kdz}dA (3.72)

A

The first term of Eq. (3.72) is evaluated by substituting the force resultant vector of Eq.

(3.60) which yields

flostY (Nyad = [fee") ((4lfe® }+ [BYoc - (N, )d

= [tow,}" 1] [C.T (AIC, 7, o)

+[B ][Cb ][Tb ]{Wb }- [P, N ]{E3 })dA (3.73)
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Thus by applying the results of Eq. (3.73), the first term of Eq. (3.72) may be expressed

in the form

[tow,37[8,1 (41B,Yow,.} + [BIB, Yow, } + [P, 1B, fow, ad  3.74)

A

Similarly by substituting the moment resultants of Eq. (3.61), the second term of Eq.
(3.72) becomes

[tox} (ayaa= [ton (BYe®}+[DYoct - {1, P
= [tow,}'[1,] [c,T (BIC, IT, Y, }

+ [D][Cb 17, ¥w, } - [PM RE, Dda (3.75)
By collecting terms, Eq. (3.75) can be simplified as
[tow,Y [, (BIB, Yo, } +[DIB, Yw,} + [P, 1B, Jw, Da (3.76)

The third term of Eq. (3.72) is evaluated by substituting Eq. (3.47) and Eq. (3.14) for the

electric displacement density as
/2
j‘[’h/z (O, )Dy dzid =
A

J‘[:z; E:J [(5E3k ){{d}i [Q]k ({go }+ z{x} - E, {d}, )+ €. E, }]dz}dA (3.77)

Again integration of the piezoelectric lamina with respect to the thickness may be
simplified by considering the geometric material assumptions previously mentioned.

Thus Eq. (3.77) reduces to

[PICREH RN SHCR T IRLIONEN

AL k=1

—(OEs, ){d}lf [Q]k {d} Eqchy, + (O, JESy En by, Jld4 (3.78)
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By considering the laminate and utilizing matrix notation, Eq. (3.78) may be expressed as

[l-{ow,) [B,T [P T 1B, Tw,.}

A

- {§W¢ }T [B¢ ]T [PM ]T [Bb ]{Wb }

+ {5W¢ }T [B¢ ]T ([6 % ]_[VD{qu }]dA (3.79)
where the matrices [(—:3‘3’] and [y] are defined as
€m 0
lez]=] ¢ €3 (3.80)
0 . egs -
{d}lT [_Q—]l {d}l _ 0

bl=| A RER E (3.81)

0 SO . 4 (o] W

Thus combining Egs. (3.74), (3.76), (3.79) yields Hamilton's variational statement, less

the kinetic energy terms, which can be expressed as

[, )" 1B, T 1418, Jow, } (3.82a)
+{ow,}" [B, I [BIB, Kw,} (3.82b)
+{6w, ) [B, '[P, 1B, v, } (3.82¢)
+{ow,}" [B,]'[BIB, Kw,} (3.82d)
+ {5Wb }T [Bb ]T [D][Bb ]{Wb } » (3.82¢)
+{ow, " [B,T [P, B, Jw, } (3.82)
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+{ow, )" [B,I 1B, T [B, Xw, } (3.82h)

+{ow, Y [8,T (71~ [e5, Dw, Jlaa =0 (3.82i)
The element stiffness matrices are determined from Eq. (3.82) and may be cast into a
matrix form of
o [I6] [kl [ey]](w, |
wt | o] TR [y (3.83)
5W¢ [k¢b] [km] [k¢] Wy
where the corresponding linear stiffness matrices are
[k, ]= j 1 [4]B, 144 (3.84)
[k, 1= [(B,1 [B1B, Jas (3.85)
[k, 1= I I adlp, 18, (3.86)
[ 1= [[B,] [BIB, Jia (3.87)
[k, 1= [(B,] [DB, Jad (3.89)
[kb¢ ]= J.[Bb ]T dA[PM ][B¢ ] (3.89)
[k, ]=[8,T [P, T [[B, s (3.90)
[k ]=18,1 [P T (B, (3.91)
[k, 1= 8,1 (1 le5: D4 (3.92)
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3.6.3 Large Deflection Equations

The nonlinear element stiffness matrices are determined by following the same
procedure outlined for the linear stiffness matrices in Section 3.6.2. In order to determine
the nonlinear stiffness matrices, the von Karman large deflection strain must be included
in the Hamilton's variational statement. The resulting variational potential and electrical

energy statement, including the von Karman large deflection strain, may be expressed as

I{ @({5&? + z{ax}T){a}de

_ kz”l [ lemlar ol ) - @) By + B, Jrlaa (3.93)

Considering the stress resultants of Eq. (3.54) and substituting the results into the first

integrand of Eq. (3.93) yields

| 6=} {87} + {oc}" {it Y (3.94)

A

Since the membrane strain and curvatures are independent of the plate thickness, the

variations in Eq. (3.94) becomes
{oe°}' = (6w} [B, 1 +{om,} (B, T'l6T (3.95)

{ox}" ={ow,}" [B,] (3.96)

where the following relation is utilized

1 1 1
o( 21618, You} -3 0618, You} 5618, Y
=[01B, Kow, } (3.97)
The second integrand of Eq. (3.93) may be similarly evaluated by substituting the von

Karman large displacements of Eq. (3.34) and performing the variational operation

described above in Egs. (3.95) and (3.96). Evaluation of the linear terms follows the
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procedure outlined in Egs. (3.78) and (3.79). Hence the variational statement of Eq.

(3.93) becomes

I[{5w,,, W1 (4D, Kw, }+— [ 1618, liw, }

+[B1B, o}~ IV,)
+ 16w, 18, 161 (A8, Jou, + S [4TO1B, Ko}
+ (8B, Yo }- IV,)
+ {60,178, 1 (1B, .} + S [BIOLE, o
+[DLB,Jom 3 - 4,
+{o, ¥[8, T 2T (18, Jon. b+ 015, v}
o, VB, T2, T 8, Jow)
+{ow, V1B, I1-[es Jiw, Ya =0 (3.98)

The variational statement contains identical terms which lead to the linear stiffness
matrices, however nonlinear stiffness matrices resulting from the von Karman large
deflection will appear and are indicated by the inclusion of the slope matrix. Thus the

variational potential energy statement in Eq. (3.98) may be written as
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Note that the linear expressions indicated in Eqgs. (3.99a, ¢, d, i, k, m, o, p) are identical to
those of Eqs. (3.82a, b, c, d, e, g, h, 1) respectively. The remaining expressions which
contain the slope matrix will lead to the nonlinear stiffness matrices. The following
transformation relationship is applicable for any force resultant vector and will be utilized
to further simplify expressions for the nonlinear stiffness matrices. Thus the product of

the transpose of the slope matrix and any force vector may be expressed as

N
r w, 0 w, ¥ N.w,,+N_w,,
Le== N = .
[6] {N.} [0 v, w J ) {N N | (3.100)
x N y y xy X )i .
Xy i
likewise
N, N W, N w, +N_w,
[N,-]{e}{ ’ yH }={ e y} (3.101)
ny Ny sy Nyw,y+nyw,x ;

Thus by applying Egs. (3.9) and (3.32), the above relation yields
67 {v.} =[N Yo} =[N IC, Ka}=IN B, Jw,}  i=b.m6,9  (3.102)

Equations (3.99¢) and (3.99h) may be manipulated into a symmetrical form. Thus Eq.

(3.99¢) becomes
{ow,}" I[B (6T 1418, Yow, Jad =
—{5W} I 1161 1418, Xw,, } + [NV, 1B, w, }d4 (3.103)

and Eq. (3.99h) becomes
{w,}" j (8,1 [61 [P, 1B, Jow, Jaa =

—{5w} I (67 12 1B, Jow, - [V, 118, Yow, (3.104)

37



where the membrane force vectors of Eqgs. (3.62) and (3.67) are used. Combining Eq.

(3.103) with Eq. (3.99b) the resulting expression becomes

f[2om BT O (415 Y.

Lo 1B, F IV, I8, Jom)

246w, 8,1 LAIOIB, Yo, i (3.105)

The above relationship may be expressed in terms of the first order nonlinear stiffness

matrices as

% ({5‘4’11 }T [nlbm ]{Wm } + {awb }T [”1 Nim ]{Wb } + {5Wm }T [nlmb ]{Wb }) (3.106)

where the first-order nonlinear element stiffness matrices are given by

[n1,, 1= [[B, 16T [4]B, Ji4 (3.107)
[y, )= (1B, [V, 1B, Ja4 (3.108)
[1,,]1= [(B,] 41618, Ja4 (3.109)

Equation (3.104) may be expressed as

%({5Wb}T[”1b¢ ]{W¢}+ {5Wb}T[”1N¢ Jow, }) (3.110)
where
[nt,, 1= (8,1 [61 a4l, I3,] (3.111)
[nlN¢]="_"[Be]T[N¢][Ba]dA (3.112) |

A

Similarly Eq. (3.99g) may be expressed symmetrically utilizing the bending force vector

and adding it to Eq. (3.99j), hence
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[[3460 8, 61 1818, o)

A

+ % {ow,} [B, ] [N 1B, Kw, }

+ (6w, (8,1 [B16T5, v, a4 G.113)

Equation (3.113) can be expressed as the first-order nonlinear stiffness matrix due to the

laminate coupling matrix [ B] and large deflection effects as

46} Tl Jou,} G.114)

where

[l 1= [(B, 116 [BIB,1+ [B, T [V, 18,1+ [B, ' [BI6IB, Jd (3115

The first-order nonlinear stiffness matrix due to electromechanical coupling can be

determined from Eq. (3.99n) as

= 16w, Jou} (3.116)

where
[, 1=[B,1 [T [l61B, ] (3.117)

The second-order nonlinear stiffness matrix is determined from Eq. (3.99f) as

1

S 16w} [n2, Jow, } (3.118)
where

[n2,=2 [15,1 (6T [41o15, Jis (3.119)

4

combining all the stiffness matrices the complete variation statement becomes
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floe)” (o}~ tomy" D= [({0w, e Yora b+ 0, o1+ 3 L )

7 4 2
e (00 T Jon, 00, (U1 S o Jou 3
0 (Tl 1+ Sty o+ 00 T+ 2]
i L St 202, Dos}
+ 16w, " [k v}
{0, ey Jows
+{ow,} [k, Jow, }

+WM%§LQ—S§ _?\L
+ Wﬁ%ﬁ, wq TH% H_?a }

+ 1w, J [k, Jow, Dl (3.120)

The integrand on the right-hand side of Eq. (3.120) may be conveniently cast into matrix

form as

oW, ' TnL (%] F&“_ 1 _HSNL [0] [o 1 _”mréu_ [0] [0
mgsFLQLFL+I§§§|1§EE

owy) \L[kw) [l 1) L1 [0 01 2L [0 [o] [0

_“Ezw+5§“_ T&?:H_ T&& Wy
A0, o1 o] |Hw, 3.121)

A ] o o w,
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3.64  Mass Matrices
The variation of the kinetic energy terms of Eq. (3.43) leads to the element mass
matrices, which consist of mechanical quantities only, since the electrical d.o.f.'s do not

have an equivalent inertial analogy. Thus the variational kinetic energy may be written as
[plion” o+ {aay” (@ + (&Y v
V

— — [ pliow)" (i} + (o} i} + {ov)” (53w

= ({6, }" I, You, } + {6} [m, Y0, }) (3.122)

where the element mass matrices are given by

[m 1=[5, 1" [{H , rp(x, y) H, JdAIT;] (3.123)

A

I, =11, ]’( U, ol y)LH, 1+ [{EL Yool y)LA, deA[Tm] (5.120

3.6.5 External Force Vector

In completing the variations indicated in the Hamilton's variational statement of Eq.
(3.43), the work done due to external forces, body forces and surface traction's were
assumed negligible, however the electrostatic work due to the externally applied voltage
must be included. The electrostatic work done as, described in Appendix C, is given by
Eq. (C.23). Since the space charge within the volume of the piezoelectric is zero, only a
surface charge accumulates on the electrode surfaces, hence the virtual electrostatic work

done can be expressed as
[svp.ds = [{ow,} {p.}ad=—{ow,} {p,} (3.125)
5 - S,

where
{py}=-[{p.Ja4 (3.126)
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3.6.6 Element Equations of Motion
The element equations of motion may be formed by substituting Egs. (3.120), (3.121),
and (3.125) into Hamilton's variational statement Eq. (3.53), and collecting terms,

resulting in

m, 0 Of|W, ky Ry Ky . n2, 0 0 : nly, 0 0
0 m, O0Rw,r+iik, k, ky,j+=| 0 0 0 —5 0 00
0 0 0fw, ki Kp Ky 0 00 0 00
: nl,, +nl,, nl,, n1b¢ w, D,
+ 5 nl,, 0 0 Wyt =3Dm (3.127)
nly, 0 0 W, Dy

3.7 System Matrices
The element equations of motion Eq. (3.127), are a set of equations which describe
the fully coupled structural and electrical properties. Application of Eq. (3.127) requires
the implementation of an assembly procedure in accordance to the prescribed electrical
and structural boundary conditions. The assembly process for the structural stiffness can

be shown symbolically as

[K]=> [k] (3.128)
where the global stiffness matrix [K ] has dimensions m x m for m structural and electrical
d.o.f's and the element stiffness [k] is of size (24+np)x(24+np). The assembly procedure

can be visualized by first starting with a null global stiffness matrix, then subsequently

adding to it [k] of each element until all the elements are considered. Assembly of the
mass matrix is accomplished using an identical procedure, however special attention is
required for the piezoelectric elements and will be subsequently discussed in greater

detail. Assembly of Eq. (3.127) yields the following fully coupled system of equations
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o e w0 sl
i, M} [M 1) B

where the system matrices and vector
[M]= i[gi’] [A[;]J (3.130)
Kl ] 13D
Ky, I= [[[?Z ]ﬂ (3.132)
[k, ]1=1k,] [K.] (3.133)
[V1]= [[Nl ’f;[:]:al”] [Aﬁ)’i]} (3.134)
[N1w¢]={[]\{é§¢q (3.135)
[N1N¢]=[[]\§)}]V¢] Egﬂ (3.136)
[Nz]{[]\[[s]”] {gﬂ (3.137)
{W}={:;’;} (3.138)
{Pw}={g} (3.139)
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If the given structure contains several piezoceramic patches, and each patch consists
of n finite elements (Figure 3.4), the assembly process must be modified only for
elements which contain piezoelectric material. The prescribed electric boundary
conditions require that the electrode be maintained to an equipotential, therefore each

patch must consist of one electrical d.o.f. and can be simply assembled as

wi={w,}, - b )T (3.140)

where N is the number of patches and {w¢ }k as defined in Eq. (3.35) is a npX1 vector

representing np number of piezoceramic layers. The solution for the assembled system of
equations in Eq. (3.129) may be obtained by utilizing the standard finite element solution
procedure. Thus during the solution process there is no need to distinguish between
structural or electrical quantities other than known or unknown quantities. |
3.8 Solution of Static Sensor Equation
To determine the voltage produced by a single piezoelectric patch bonded to a panel

subjected to a static uniform distributed load, Eq. (3.129) may be partitioned as

M+ ([ 1 S V-3, Je 5 V20 o)

+([Kw¢]+%[N1w¢ Ww,={r} (3.141)
([KW]+%[N1¢W ){W}+K¢W¢ =0 (3.142)

where Eq. (3.142) may be solved in terms of the unknown voltage as

w, =—K¢‘1([KW]+-;—[N1 ¢w]){W} (3.143)

where {P¢}= 0 since there is no externally applied voltage to sensor. Furthermore Eq.

(3.143) may be substituted into Eq. (3.141) resulting in a system of equations which may

44



be solved for the structural d.o.f. in response to the structural loading. The structural
d.o.f. may be subsequently applied to Eq. (3.143) in order to determine the voltage. Since
the system under consideration is static, the inertial terms will be identically zero. In
addition since there is no externally applied voltage, the first-order nonlinear electrically
coupled stiffness [N 1 N¢] will also be identically zero. Substituting Eq. (3.143) into Eq.
(3.141) yields the following system of equations, which must be solved for the structural

d.o.f. due to the static loading

@&+ 52 V- [, I K-S R T P v,

—%[NIW¢IK¢ I [KW]—?::[NIWJKJI (v, D7y = (P} (3.144)

The Newton-Raphson iterative method is used to solve the nonlinear system of equations
of Eq. (3.144). Recall that the first- and second-order nonlinear stiffness matrices are
functions of the unknown displacements.
3.8.1 Newton-Raphson Iteration Method

The Newton-Raphson [20] iterative method is used to solve Eq. (3.144) by solving for

an incremental deflection which is given by

Wi, =} +{aw}, (3.145)

i+l

The iterative procedure is carried out until the incremental deflection {AW} approaches
zero resulting in a converged static deflection {¥'}.
Equation (3.144) can be written as a function, which may be expressed in terms of a

Taylor series expansion thus
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(PO} =(K,]+ [N2]+ [NI]
- [Kw¢IK¢]_I[K:;m]"%[ngs:[lg]_I [N1¢w]

—%[N1w¢IK¢]'l[K¢W]—%[NIW¢IK¢]'I[N1¢W]){W} ~{P}=0 (3.146)

The truncated Taylor series expansion is represented symbolically as

AP (W)

(PO + AW} = {2 (7)) + { o

}{AW} o} (3.147)
Differentiation of Eq. (3.146), referred to as the tangent stiffness, results in

1

d‘P(W)=d[([Kw]+%[N2]+5[Nl]

[ I - S, Tr P ]
— L JK P D= v I P v, Dior (3.148)

The indicated differentiation of the tangent stiffness in Eq. (3.148) is accomplished by a
term by term evaluation, beginning with the first term, which is the linear structural
stiffness matrix. Since the linear stiffness matrix is constant with respect to the structural

d.o.f,, the differentiation is a trivial operation resulting in

d(K,Jw) =[x, {aw} (3.149)

Differentiation of the first-order nonlinear stiffness matrices invokes a two-step approach

since [N1] is comprised of [N1,,][N1,,][N1,,] and [N1,;]. The first step will deal

with [N1,, ] [N1,,] and[N1,,], and the second step will involve the differentiation of

bm bm

[N1,;]. The differentiation must be performed on the element level stiffness matrices,

thus [n1] is expressed as
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(i ) o

Thus the derivative of [ N1] can be performed on the partitioned element level definitions

given in Eq. (3.150) as

([”1Nm fw,})+d((n1,, Kw,}) (3.151)

and
d([n1,, {w,}) (3.152)

Applying the definitions expressed in Eqgs. (3.107) and (3.108) to Egs. (3.151)and (3.152)

yields

1+ Ik Do} Yo} = S T IC, T AT6NC, Kb

+[5T [ic,1 [T [4lC, Kbl (3.153)

where [C, [{a} = {#}. Performing the required differentiation of Eq. (3.153) yields

7,1 [lc, T [4)(a6)6} + [6)a6})da

A

+[1,T fic,] [46T [4]C,, ib}aa

+[L,T j[c] Fl4]c,Jdab}da (3.154)

Simplification may be achieved in the above equation by considering the following

relations
dW,x 0 dw’;; w}x
W,
[d6)e}=| 0 aw, { } = aw,, w,, (3.155)
w,
dw,, dw,, 7 dw,, w, +dw,, w,,

a7



. 0 dw aw, w,,
[6Ydet=| 0 w, {dw’x}z dw,, w,, (3.156)
2y
W,

aw,, w, +dw, w,,

Therefore
[d6}6} = [6Xa6} = [6]C, Kda} (3.157)

Thus Eq. (3.154) may be cast in the following form

12,1 fic,1 4161C, ld4{da}

A

5T fic,] v, 1C, Yda}da

A
T
+[5,1 [lc,] [T [4IC, Jaaian} (3.158)
A
Thus the differentiation procedure can be summarized as

af[ St ) oo Sltlon)

= [nl,, fdw,} + [nl4, Kdw, }+ [nlbm Kaw,} (3.159)

The second step used to differentiate [ N1,; | uses a similar approach involving Eqs.

(3.114), (3.992), and (3.99j) resulting in

St Jon =0T fic,] [6F 1BIC, ojad
+{L} [ic,T [BI6IC, o (3.160)
Performing the indicated differentiation yields

T fic,] 46T [BIC, Yatda+ 5T [IC,] [6] [BIC, Kdaydd

A

+[5,T [ic,] [BIoXd6}da (3.161)
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and by using the relations in Eq. (3.157) yields

LT (.1 I¥,1C,1+[c,T 6] [BIC, ]

+[C, I [BIOIC, Dd4{da} (3.162)

which may be summarized as

d (% [l ]{Wb }) = [nl law,} (3.163)

Combining the results of Egs. (3.159) and (3.163) yields

d@ [Nl]{W}) _ [V} (3.164)

" Similarly, differentiation of the second-order nonlinear stiffness matrix may be performed

using the element expression in Eq. (3.119) and substituting [C, {a} = {8}, thus

02,3} =557 fic,T eT [4ToYepas (3.165)

Performing the indicated differentiation operation produces

(M2, Jou}) = 2I0T 0,1 T ANPIC, e} = 2, Ydw}  (3.166)

A4

which may be expressed as
dG[Nz]{W}) _ [V2)aw} (3.167)
The next term in Eq. (3.148) involves differentiation of the linear electrical-structural

coupling stiffness matrices, which is a trivial operation since the stiffness matrices are

constant with respect to the structural d.o.f., hence
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a(x,, Iz, ' 0m) = [k, I, K, e} (3.168)

The next term of Eq. (3.148) involves differentiation of the nonlinear electrical-structural
coupling stiffness matrix, which is a function of the bending displacement, thus the

differentiation is indicated as

d(%[KW IK¢}1[N1¢W]{W}) (3.169)

which can be expressed in terms of the element level matrices as
1 [k,,¢ ]}[ 1[[111 ]D{ w, }
- kT (3.170)
( 2 |:[km¢ ] ’ [O] wm

by recalling Eq. (3.117), the first order nonlinear coupling stiffness term is defined as

%[nlﬂ, Jow,} = [B,Y (BT [[61C, JadlT, w,} (3.171)

since it was previously shown that the linear stiffness matrices are constant matrices they
are not affected by the differentiation indicated in Eq. (3.169). Thus differentiation may

be accomplished by differentiating Eq. (3.171), which results in
B, TR T [la6]C,)dAlz, Yow,} +[B,] [, [I61C,JaAIT, ] (3.172)
A A

by using the fact that {a} = [T, {w,}. The relations of Eq. (3.157), Eq. (3.172) may be

reduced to
B, 12T [l61C,JeAlr;] (3.173)
A
Thus the differentiation indicated in Eq. (3.169) can be summarized as

k. Ix, T [Ni¢w]{dW} (3.174)
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The next term of Eq. (3.148) requiring differentiation is the matrix transpose equation of

Eq. (3.169)

d(% [N1w¢][K¢}1[K¢W]{W}j (3.175)

thus neglecting the linear stiffness matrices differentiation of the first order nonlinear

coupling matrix is simply the matrix transpose of Eg. (3.172) and is given by

LY ficoT taof adlp, 1, Jon) + 15T flCT T adlnd8] G176

A

thus differentiation results in

d(%[le I, T [KW]{W}) =[v,, 0%, &, Kaw) (3.177)

The next term of Eq. (3.148) involves the product of two nonlinear coupling matrices
1 1
d(Z[N1w¢[K¢} [N1¢w]{W}) (3.178)
which is expressed at the element level as

L))

This results in a differential with respect to the bending displacement only, resulting in

d& 1, Ik, 1 o Ko, }) (3.180)

where
[n1,,]=1 ch] [6] dA[P, B, = [, [ (3.181)

Once again the linear stiffness matrix is constant and unaffected by differentiation. Thus
the differentiation is performed on the product of the first-order nonlinear stiffness

matrices only resulting in
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-j;[r,, T fic.ftao adlp, Ia, T T BT IAT ffoTc,atrlon)
LT fic,T 01z 1B, Ik P [B 1T fl0XC, Al Jow,}
+%[T] j[c 11614, [8,Ie, T (BT 17,] j IC, 4z,

which is simplified by employing the relations of Eq. (3.157) resulting in

a2 e, Tt Joud) =2 o, T Tt Jo)

Reassembling the system matrices yields

dG v I, 1 [le]{W}) =3, Ik T, Jawy

and collecting all terms yields the tangent stiffness matrix given by

)

=[]+ V2] + V1= [, DK, T K,
"[Kw¢IK¢]_1[K¢w]_[N1w¢][K¢]_l[Kw]“‘i'[legﬁIKgs]_l[N1¢w]

Thus Eq. (3.147) becomes the nonlinear static equation where

(K. faW} =1{AR,}

52
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(3.183)

(3.184)

(3.185)

(3.186)



The incremental right-hand side vector is

(88} = (R}~ (& 1+ 5 [V2)+ S N1]

- [Kw¢][K¢ Tl [K¢w]‘ “;‘[Kw IKJI[N 1¢w]

_%[N1W¢IK¢]'I[KW]—%[NIWIKJ'[NIW]){W} (3.187)

In the Newton-Raphson iteration, the initial nonlinear stiffness matrices are determined
from the linear static displacements. Once the incremental load vector and tangent

stiffness matrix are assembled, the Newton-Raphson tangent equation shown in Eg.

(3.185) is solved to determine {AP,}, which is subsequently used to update the static

deflections. During the iterative process, the incremental load vector and the incremental

deflection will approach zero, resulting in a converged deflection solution.
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Piezoceramics

Composite Panel

Fig. 3.2 Geometry of a laminate with embedded piezoceramics

55



56

[

Piezoceramic

Isotropic Panel

Fig. 3.3 Isotropic panel with surface mounted piezoceramics
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Fig. 3.4 Piezoceramic elements for two patches
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CHAPTER IV
EXPERIMENTAL SETUP

4.1 Introduction

It was desired that a typical representative aircraft structural panel be tested, and the
experimental results compared to the finite element analysis. Therefore a 14"x10"x0.040"
aluminum panel was selected for the experiments. For a panel of this size, it was much
easier to construct a test fixture that achieves approximate clamped boundary conditions
as opposed to simply supported boundary conditions.

4.2 Establishment of Clamped Boundary Conditions

A clamping fixture consisting of two aluminum plates of size 25"x20"x1", with a
rectangular 14"x10" hole machined out of the center, was manufactured to achieve the
clamped boundary conditions as shown in Figure 4.1. The rectangular cut-out was
centered such that there was a minimum of four inches of clamping surface around the
perimeter of the 14"x10" panel cut-out. The mating surfaces of the clamping fixture were
measured to be within +0.002" flatness. A series of 26 pilot holes for 1/4" cap screws
were drilled in an evenly spaced pattern 1/2" beyond the perimeter of the panel cut-out.
Another series of 8 pilot holes were spaced evenly around the outer perimeter of the
fixture 3/4" from the edges and sized to accommodate the 3/8" cap screws. The 0.040"
test panel specimen was cut to 25"x20" so as to fit the overall clamping fixture. Two 1/4"
alignment pins were placed at opposite corners to assure repeatable and consistent
assembly. Wooden support blocks were placed on the bottom of the panel to support the
clamping fixture in a vertical fashion. The clamping fixture was assembled with grade-8,
high strength hex head cap screws, washers, and nuts. The 1/4" and 3/8" cap screws were
tightened to 15 and 20 fi-1b respectively in 5 ft-1b increments. The tightening sequence

followed is depicted in Figure 4.2.
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4.3 Piezoelectric Wafer Preparation

A single 2.5"x1.5"x0.010" piezoelectric wafer was bonded to the panel 3/4" from the
boundary, symmetrically on the centerline (see Figure 4.3). Before the wafer can be
attached to the panel, electrical leads must be attached to the wafer electrodes to facilitate
the instrumentation. Since the piezoelectric wafer was polarized in the 3-direction the
electrodes are on the top and bottom surfaces. The piezoelectric is a polarized dielectric,
therefore if any residual electrode material is attached to any of the edges in the 2- or 3-
direction, a complete or near short circuit will adversely affect the piezoelectric process,
if not completely inhibit it. In addition, since the electric field is the gradient of the
electrical potential as shown in Eq. (3.36) a very large electric field, or potential gradient
will exist. This condition could cause dielectric breakdown of the piezoelectric resulting
in a short circuit condition. This adverse condition may be minimized if the piezoelectric
edges are straight and perpendicular. To assess the quality of the piezoelectric edges the
resistance and capacitance can be measured with a high quality multimeter and
comparing the results to the manufacturer's specifications. If an ill-conditioned edge is
detected, as indicated by a low resistance or capacitance, then the edges may be gently
scraped or sanded with a very fine machinist wet abrasive paper. If the specified
resistance cannot be obtained then the piezoelectric wafer should not be used.

4.4 Piezoelectric Lead Attachment

Electrical leads must be soldered to the electrodes of the piezoelectric wafer.
Traditionally to obtain a good electrically conductive and mechanically reliable solder
bond both the substrate and the lead being attached must be raised to a temperature
greater than the melting point of the solder. This technique will adversely affect the
piezoelectric wafer since depolarization will occur if subjected to temperatures in excess
of the Curie point which is 3650C for PZT-5A [21]. The depolarization may occur
locally within the piezoelectric, thereby altering the overall charge constants. A complete

depolarization rendering the piezoelectric inoperative is unlikely, therefore extreme care
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must be taken to assure that the piezoelectric properties are not altered during the
soldering process.

The piezoelectric wafer is a polarized dielectric, and since thermal conductivity is
proportional to electrical conductivity [22], the piezoelectric wafer is a thermal insulator.
Hence the heat applied during soldering will not readily dissipate through the wafer. On
the other hand the electrodes are nickel and are highly conductive, however since they are
only 0.00005 - 0.0002" thick their thermal capacity is very small. The only other thermal
member remaining is the lead to be attached. The lead size should be selected to
minimize its thermal capacity so that it does not act as a heat sink and direct the heat
away from the wafer, thus increasing the soldering time. The leads used were copper foil
2"x1/16"x0.001". A temperature selectable thermostaticly controlled soldering iron fitted
with a small pencil tip was used and set to 3609F. The electrodes of the piezoelectric
wafer were cleaned with alcohol and a small amount of liquid flux applied. The lead was
cleaned, fluxed, and tinned with solder. After the lead cooled additional flux was applied
to the lead and placed on the substrate, then with light pressure, a tinned soldering iron
was placed on top of the lead until the solder between the lead and electrode melted. The
soldering iron was removed within five seconds as recommended by the piezoceramic
manufacturer.

4.5 Piezoelectric Wafer Bonding

The piezoelectric wafer attachment is carried out in a two step process to ensure both
electrical isolation and mechanical bonding. A strain gage epoxy adhesive system was
used to bond the wafer to the aluminum panel [23]. The electrical isolation is obtained by
applying a thin layer of adhesive to the panel prior to the application of the wafer.
Initially the panel is cleaned with alcohol to remove any dirt and oil. The piezoelectric
location was measured and marked within 1/64" using a sharpened mechanical lead
holder. The scribe lines were extended three inches beyond the actual location for future

reference since excess adhesive will cover the lines as indicated in Figure 4.4. Mylar
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adhesive tape was applied 1/16" beyond the scribe lines creating a rectangular mold
which will be filled with adhesive. Additional mylar tape was used to cover and protect
the scribe lines remaining outside the frame, see Figure 4.5. The framed area was wet
sanded with alcohol and abrasive cloth, wiped clean and treated with a micro-abrasive
metal conditioner. Next a semipermiable Teflon cloth and mylar sheet were cut and
placed over the area to be glued and one edge was attached to the panel with mylar tape.
The adhesive is mixed and a thin layer is applied to the framed area, the Teflon cloth was
placed over the adhesive and covered with the mylar sheet and a vacuum pad was
attached and activated. The vacuum pad will provide a uniform pressure permitting
excess adhesive to penetrate the Teflon cloth. The adhesive was permitted to cure
overnight since the minimum curing time was six hours.

Once the adhesive cured the vacuum pad was removed along with the mylar tape.
The Teflon cloth provided an abraded surface texture however the adhesive should be
uniform without any voids or bumps. Using the original exact scribe lines reapply the
mylar tape to create a frame which will be exactly the size of the piezoelectric wafer. The
adhesive surface and the piezoelectric wafer were cleaned with alcohol and a thin layer of
adhesive was applied to the existing base coat on the panel. The piezoelectric wafer was
placed on the adhesive and covered with a thin layer of foam and the vacuum pad placed
over it and allowed to cure over night. It should be noted that the electrical lead on the
wafer should be as thin as possible including any residual solder. If however the
piezoelectric wafer is very thin, and subjected to an excessive vacuum loading, the lead
may crack the piezoelectric wafer. For a flat horizontal application, only a slight vacuum
loading is required, to ensure a uniform distributed load during the curing process.

4.6 Uniform Distributed Loading

To assess the static piezoelectric sensor a uniform distributed load was applied to the

panel. However, since piezoelectrics cannot sustain a static charge the uniform

distributed load must be applied instantaneously. To achieve the instantaneous load the
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test clamping fixture was modified to include a 14"x16"x1/4" plate on one side, thus
creating a vacuum chamber. The vacuum plate was attached using the existiﬁg fixture
bolts and was sealed with a vacuum grease. Three fittings facilitated a vacuum pump,
vacuum gage, and a quick-release ball valve as indicated in Figure 4.6. To conduct the
static sensor experiment the vacuum was applied and the maximum plate deflection was
measured using a dial indicator. Once the desired deflection was achieved the vacuum
was held by closing the valve and noting the corresponding pressure. With the plate in a
deformed state, the residual charge was allowed to dissipate. At this time, the ball valve
was opened quickly and the sensor voltage was measured by recording the time history
using a fast Fourier analyzer.
4.7 Material Properties

The experiments conducted for this research were performed on a rectangular
isotropic aluminum panel with a single bonded piezoceramic patch. Various static and
dynamic experiments were conducted in order to obtain data that was compared to finite
element analysis which will be discussed subsequently in Chapter IV. The piezoceramic
used herein was PZT-5A manufactured by Morgan Matroc [21]. Table 4.1 provides the
physical material properties. The physical properties of the aluminum panel used for the

experiments may be found in Table 4.2.
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PZT-5A
Charge Constants d3] -171e-12 | m/V
Permittivity | & 1700
Density Y 7700 kg/m3
Length L 0.0762 | m
Width W 0.0381 |m
Thickness h 254e-6 | m
Young's Modulus E 6.9¢10 | N/m?
Poisson's Ratio 14 0.31

Table 4.1 Piezoceramic Properties

Aluminum Panel
Density V% 2702 kg/m3
Length L 0.356 m
Width W 0.254 m
Thickness h 1.02e-3 |m
Young's Modulus | E 6.1¢10 | N/m?
Poisson's Ratio 14 0.31

Table 4.2 Aluminum Panel Properties
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Peizoceramic location

Extended pencil guidelines

Fig. 4.4 Piezoceramic mounting preparation

67




i
Mylar tape
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Fig. 4.5 Piezoceramic adhesive preparation
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Fig. 4.6 Vacuum plate

69



CHAPTER V
NUMERICAL AND EXPERIMENTAL RESULTS

5.1 Introduction

The verification of the linear finite element model was conducted by considering a
simply supported square panel. Initially, an isotropic panel is considered where the
maximum transverse deflection was compared to the classical solution. Next a bonded
piezoelectric patch is included and the predicted sensor voltage resulting from a uniform
distributed load is compared to a voltage determined using a classical solution method.
The large deflection finite element model was verified by comparing results to a single
mode classical solution for moderately large deflections of a square clamped plate.
Subsequently, finite element results are presented and compared to experimental results
obtained from a clamped rectangular panel. Results include static and dynamic sensor
applications and dynamic actuation.
5.1.1  Static Small Deflection

In order to verify the finite element model formulation, a simply supported isotropic
panel subjected to a uniformly distributed load is considered. The small deflection
approximation is used in the finite element formulation. The Navier solution for a simply
supported rectangular plate is computed and used to validate the finite element model.
The Navier solution for the transverse deflection of a simply supported plate under a

uniform load is given by [24]

w(x, y) = ;65; » 21 : )2 sin( m;“)sin(”—b”’i) (5.1)

where m=13,5,---00 and n=13,5,---00. Thus the maximum deflection can be found by

substituting x = A and y= % . Figure 5.1 provides the finite element analysis non-

dimensional maximum deflection compared to the classic Navier solution of a
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10"x10"x0.040" simply supported plate subjected to uniform loads. The accuracy of the
finite-element, small-deflection formulation has thus been established.
5.1.2  Static Large Deflection

To verify the large deflection finite element model formulation a clamped square
panel subjected to a uniform distributed load is considered. A single mode classical
solution for moderately large transverse deflections is given by Chia [25] as

4

3
(1”—“—) +0.2522 241 = 0.0001333 222 (5.2)
7 h Dh

where Wy =2.5223wy;, h is the panel thickness, D is the bending rigidity, g, is the
uniform distributed loading, and a is the width of the panel. Comparison of the large
deflection finite element formulation non-dimensional displacement and the single mode
solution is shown in Figure 5.2. Excellent agreement was obtained for the large defection
formulation, thus establishing the accuracy of the finite element model.
5.1.3  Static Sensor

In order to validate the static sensor formulation an isotropic plate with a single
piezoelectric patch bonded to the surface is considered using a classical voltage solution
method. The classic solution applies Gauss's law to determine the charge enclosed within

a surface and is given as

g=[D-da (5.3)

where D is the electric displacement density and da is the differential normal vector of
the surface S. However, the space charge within a dielectric is identically zero, thus Eq.
(5.3) cannot be directly applied to piezoceramics. Since the charge generated by the Kh
piezoceramic layer is accumulated at the electrodes (top and bottom surfaces of the Kth
piezoceramic layer), Eq. (5.3) may be expanded to determine the effective charge such

that
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§%(z=2)

7, =%£SI(Z_L‘:M)D3dxdy . ”Dsdxdy] (5.4)

Substituting Eq. (2.12) into Eq. (5.4), setting the applied electric field to zero for the

sensor application, and considering an effective or average electrode surface area yields

g, = [ [lel(e}+ z{c})axay (5.5)

Substituting the strain-displacement relationships of Egs. (3.16) and (3.17) yields

q, = _”(631 (u,,—2zw, . )+ ey, (v,y —zW,,, )+ €36 (u,y +v,,—22w, )}lxdy (5.6)

SE
Neglecting the inplane strain, since the small displacement approximation was used, Eq.

(5.6) may be simplified as

q, = H— z[emw,xx +tenw,,, t2e;w, ]dxdy (5.7)

Utilizing the Navier solution of Eq. (5.1) for the transverse deflection and setting e,, =0,

the charge of Eq. (5.7) becomes

16,5 = & 1 (mmc)’ (nﬂy)yz
=2 0. 7 cos Ccos| —= +
9 z°Da pmzﬂ; {m?* n? 2 a Jlx b Jl,,
n -——2——+‘—2
a b
16g,a 2 & 1 ( ) (mzy)”
0 7 coS cos| —— (.8
zDb p;; ,(m* n® 2 a Jly, b/,
m ~T+—2
a b

where Zy, represents the distance of the mid plane of the Kth piezoceramic layer and is the
| effective electrode area as shown in Figure 5.3. The effective electrode area establishes
the electrical boundary conditions to facilitate the electric displacement density. The
classic and finite element voltages due to various pressure loading applied to a simply
supported 10"x10" plate is shown in Figure 5.4. The excellent agreement indicates that

the finite element formulation will accurately predict piezoelectric sensor voltages.
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5.2 Experimental and Analytical Comparison

The experiment was conducted using a rectangular aluminum plate with a single
piezoceramic patch bonded to the top surface. The validated finite element model was
modified to include clamped boundary conditions. A full analytical model was used to
model the complete experimental plate by using a 10x8 mesh which includes 4
piezoceramic elements and is shown in Figure 5.5. By employing a high input
impedance charge amplifier, the charge signal may be recovered and related to the
voltage generated by the piezoceramic through the intrinsic piezoelectric capacitance as
V=q/C, as described in Appendix C. Since a charge amplifier was used during the
experimental test (refer to Appendix E) the charge was converted to volts during the
analysis. It should be mentioned that if a rate of strain is desired, then a current amplifier
must be used in lieu of a charge amplifier.

The finite element simulation requires modal damping values of the plate, so they
were determined experimentally along with the natural frequencies and are shown in
Table 5.1. In the following Sections, a complete comparison of experimental and

analytical results of the static and dynamic sensor and dynamic actuation is provided.
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Experiment Analysis

Frequency Hz. Modal Damping Frequency Hz.
103.06 0.034 106.71

164.56 0.0047 173.0

236.1 0.0095 256.47

268.81 0.0007 282.58

298.94 0.004 316.70

392.9 0.0031 422.65

412.2 0.0057 433.65

488.5 0.0034 491.73

Table 5.1 Natural Frequencies and Damping Values

52.1  Static Sensor

The static sensor analysis was conducted in two steps. The first step implements the
small deflection assumption, however in order to accurately predict the experimental
results, a second approach including the large deflection approximation is performed.
The linear piezoelectric theory accurately predicts the sensor voltage for small pressure
loading, however for higher pressures the geometrical nonlinearities dictate the plate .
deflection and thereby affect the sensor voltage. Given the fully coupled electrical-
structural formulation, the large deflection assumption includes the nonlinear electrical-
structural stiffness matrices of Eq. (3.143). It should be noted however, that there is no
nonlinear stiffness associated with the uncoupled electrical d.o.f. since the linear
piezoelectric theory assumption is maintained.

The small deflection analysis and experimental sensor voltages of a 14"x10"x0.040"
clamped plate due to uniform distributed loads are shown in Figure 5.6. Note that for

small pressure loading, the small deflection analysis results coincide with the test results.
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Thus for small pressure loading the small deflection analysis is valid. However it should
be noted that for high speed flight vehicles it is not uncommon to experience differential
pressures in the range of 3-5 psi, thus the experimental loading considered is not
unreasonably high. The non-dimensional deflection due to the large deflection analysis is
shown in conjunction with the experimental results of a 14"x10"x0.040" clamped plate in
Figure 5.7, and excellent agreement between the large deflection analysis and the test data
is achieved. Similarly the experimental and analytical sensor voltage based on the large
deflection analysis is shown in Figure 5.8. The agreement for the sensor voltage between
the analysis and the measured experimental Iresults is not as close as the maximum
deflection. Deflections and sensor voltages from the small deflection analysis are clearly '
not agreeable with the test data. The static sensor analysis was based on the assumption
that the uniform distributed loading may be modeled as a step function triggered at some
time ¢,. Analytically, the piezoceramic is capable of producing a static charge, however
real piezoceramics are not physically able to sustain a charge to a true DC response [26].
The static sensor experiment used was constructed to approximate a step response by
establishing a distributed load and then allowing the generated charge to dissipate, then a
ball valve was opened quickly thereby releasing the distributed load. Thus the pressure
loading is actually a transient response with a finite rise time. As the distributed loading
was increased the slope of the pressure discharge became more critical indicating that the
discharge time could no longer be assumed to be instantaneous. Therefore improved
analytical results may be obtained by simulating the transient response numerically and
computing the subsequent response through Duhamel's integral.
5.2.2 Dynamic Sensor

The dynamic sensor analysis is based on the small deflection assumption since the
applied loading was within the linear analysis range. However modal damping values are
required and thus determined experimentally and are shown in Table 5.1. The

experimental tests were conducted using a point load provided by an electrodynamic
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shaker attached to the center of the panel as shown in Figure 5.9. A sinusoidal excitation
signal was applied to the shaker and the subsequent piezoceramic voltage was measured
and recorded. For the steady state dynamic sensor analysis the structural d.o.f. are

transformed into modal coordinates by

W= q,0fw}, =lvla} (5.9)

r=1

where the ¢'s are the modal coordinates and [i] is a reduced set of mode shapes. The
small deflection equations of motion may be obtained by substituting Eq. (3.143) into Eq.

(3.141) resulting in

v+ ([, 1- [, 0K, T [ D7y = €, (5.10)

The equations of motion in Eq. (5.10) may be reduced to a set of uncoupled modal

equations of much smaller d.o.f., by utilizing the modal transformation of Eq. (5.9), thus
resulting in

mg,+c,q,+k.q, =1, r=12,...,n (5.11)

where the small deflection assumption was imposed resulting in the linear equations of

motion. The uncoupled equation of motion of Eq. (5.11) may be written in the following

form as

qr +2§r0)rq.r +w3qr = i’ (512)

r

The modal mass, stiffness and force are obtained from

{w} (MLIKDfy}=(m,.k,) (5.13)

where
[K]=([Kw]—[Kw¢][K¢]‘l [Kw]) (5.14a)
Wi {P}=1, (5.14b)
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The modal damping &, ratios were determined experimentally, and are shown in Table
5.1. Thus the modal coordinates ¢; in Eq. (5.12) may be determined and substituted into
Eq. (5.9) to determine the nodal d.o.f., which are then substituted into Eq. (3.143) to
determine the sensor voltage. Note that the first order nonlinear coupling stiffness of Eq.
(3.143) is identically zero since the small deflection assumption has been applied. The
dynamic analytical sensor voltage due to a sinusoidal point load applied to a
14"x10"x0.040" clamped plate is compared with the dynamic experimental sensor voltage
in Figure 5.10. Similarly, the predicted and measured displacements of the plate center
are compared in Figure 5.11. Excellent agreement between the experimental results and
the analytical predictions are obtained for both the sensor \}oltage and the plate
displacement as expected, given the linear static sensor results for small deflections. The
dynamic analysis was computed using the reduced modal data set for the first eight
modes shown in Table 5.1.
5.2.3 Dynamic Actuator

Since a single piezoelectric patch was used for the experiments, and it was observed
that the resulting plate deflections were small due to piezoelectric actuation, the small
deflection analysis was employed in the dynamic actuator formulation. In the
experiment, a 120 Hz sinusoidal excitation signal voltage was amplified to 20 volts and
supplied to the piezoceramic patch. The resulting acceleration at the panel center was
measured as a time history on a fast fourier analyzer. The time domain acceleration
signal was transformed in the frequency domain and integrated twice to determine the
center plate displacement. The frequency domain integration was performed during post
processing using Matlab®-

The actuator equation can be determined from Eq. (3.129) as

[M]{W}+([Kw]—%[N1~¢]—[Kw¢IK¢]“[K¢w]j{W}=—[Kw¢IK¢]‘1{P¢} (5.15)
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where {P¢} is the electrical loading determined from Eq. (3.126). Similarly the modal

coordinate transformation shown in Section 5.2.2 can be applied to Eq. (5.15) resulting in

mg,+¢,q,+kq, =1, (5.16)

§,+20,0,4, +0'q, = n’: ’ (5.17)

r

The modal mass, stiffness and force are obtained from

i, (MLIKDfy}, =(m,.k,) (5.18)

where
(= (1. 13 - [, IR TR (519%)
KK R =7, . (5.19)

and f; is the applied electrical load determined in Eq. (3.126). Note that even though the

small deflection assumption is employed, in the actuation formulation the [N g ] term is

included since it is comprised of known quantities shown in Eq. (3.112).

The actuation voltage used in the analysis to determine P; was applied to a single
piezoceramic actuator attached to a 14"x10"x0.040" clamped plate is shown in Figure
5.12. The actuation signal used in the experiment was a 20-volt sine wave of 120 hertz
obtained from a signal generator. The predicted and measured displacement of the plate
are compared in Figure 5.13 and excellent agreement between the predicted displacement
and test data is obtained. Since the displacement of test data is small, the signal-to-noise
ratio of the accelerometer was less than ideal resulting in the excessive noise present on

the displacement signal.
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CHAPTER VI
CONCLUSIONS

A finite element formulation exploiting the inherent electrical-structural coupled
nature of piezoelectric materials is presented and compared to experimental test results.
To verify the analytical model several tests were performed which included static uniform
distributed loading, dynamic mechanical point loading, and dynamic piezoelectric
actuation of a thin clamped plate with a bonded piezoceramic patch. The objective was to
utilize linear piezoelectric theory in conjunction with the small deflection assumption in
the finite element formulation, however the experimental tests indicated that the uniform
distributed loading of the panel resulted in geometrical nonlinear transverse deflection.
The predicted results obtained using small deflections were in excellent agreement with
the test results for small pressure loading, however they were unacceptable for larger load
values. The experimental pressure loading considered is not unreasonably high
considering typical high speed flight vehicles experience pressures within the 3-5 psi
range. Since the panel was selected to represent a typical aerodynamic structure, the
finite element formulation was updated to include the von Karman large deflection theory
which subsequently lead to coupled nonlinear electrical-structural stiffness. The
predicted sensor voltages using the large deflection assumptions were in good agreement
when compared to the experimental results. The sensor voltages obtained using the large
deflection assumption were not as good as the predicted large deflection displacements,
however the small deflection results are clearly unacceptable for the larger pressure
loading. Excellent agreement between the predicted results and the dynamic test results
were obtained utilizing the small displacement assumption since the experimental test
used small dynamic loads.

It was discovered that the electrical-structural coupling of the piezoceramic leads to
coupled linear and nonlinear electrical-structural stiffnesses in the large deflection static

sensor. The coupled stiffness appears in the Newton-Raphson tangent stiffness
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formulation. Thus, even though linear piezoelectric theory was utilized the electrical-
structural coupling was sustained through the large deflection geometric nonlinearity.

Experimental measurement error was introduced since a charge attenuation circuit
was required due to the large charge signal generated by the piezoceramic patch. The
additional capacitance alters the low frequency response of the piezoceramic charge
amplifier by decreasing the overall time constant thus, the measurement error may be
reduced by modeling the effects of the charge attenuator during analysis. The charge
attenuator may be eliminated from the experiment by utilizing a smaller piezoceramic
sensor, thus compromising actuator performance, or utilizing a source follower to
measure a proportional rate of strain in lieu of a proportional displacement measurement.

A more accurate model of conductors and insulators would improve the electric field
formulation in the large deflection static sensor finite element formulation.
Improvements can be made to include more elements to accurately model the
piezoceramic while utilizing a symmetrical finite element model. However, it was
observed that it is important to properly model the electrical boundary conditions when
using a symmetrical model. Since the static sensor experiment used a pressure load that
approximated a step function, the static sensor results could be improved by simulating
the actual transient pressure loading and computing the results through numerical
integration. In addition a more accurate method of measuring the static plate deflection
should be used in lieu of the dial indicator used.

Future work may be applied in the area of incorporating piezoelectric thermal
properties in the analysis or considering the application of control theory to the results.
The piezoceramic physical properties show a strong temperature dependency which may
be incorporated in the piezoceramic constitutive relations. Thus, a fully coupled
electrical, structural, and thermal finite element model can be formulated. The finite
element formulation was implemented in Matlab® which permits future opportunity to

incorporate control and simulation analysis.
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APPENDIX A
TRANSFORMATION MATRICES

The element used in the finite element model is a rectangular element consisting of
twenty four structural degrees of freedom, accounting for bending and membrane
displacements plus an additional electrical degree of freedom for each piezoelectric layer.
The rectangular element consists of four corner nodes with displacements w, u, v and
their derivatives w,,w,,w, . The electrical d.o.f's are represented by the voltage V'
uniformly distributed over one side of the piezoelectric electrode, see Figure 3.1.

Coordinate transformations are required to relate the local element coordinates to the

global structural coordinates. The membrane nodal displacements, given by

w i =lu u, ug u, v, v, v, v, (AD)
are obtained using the bilinear approximation functions in Eq. (3.6). The nodal
" membrane displacements can be obtained by substituting the element nodal coordinates
into the appropriate approximation functions. Thus the membrane nodal displacements

become

4,(0,0,1)=b, (A1)
u,(a,,0,6)=b, +b,a, (A2)
u,(a,,b,,t)=b, +bya, +b;b, +b,a,b, (A3)
u,(0.b,,1)=b, +bsb, (Ad)
v,(0,0,¢) = b, (A5)
v,(a,,0,t)=b, +bsa, (A6)
v,(a,,b,,t)=b, +bea, +b,b, +bsa,b, (A7)
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v,(0,,,£)=b, +b,b, (A8)
where the element length and width are a, and b, respectively and the generalized

coordinates are represented by the b coefficients.

The membrane displacements in Egs. (A1-A8) may be written in matrix notation as

(w,] [1 0 0 0 0 0 0 O ](§)
Uy 1 a 0 0 0 0 0 O ||5
u, 1 a, b ab, 0 0 0 0 ||b
u, 1 05 0 0 0 0 0 [|5
T = 1,0 (A9)
v 0 0 0 0 1 0 0 0 ||b
v, 0 0 0 0 1 a 0 O0||b
v, 0 0 0 0 1 a b abl|b
v.,) [0 0 0 0 1 0 p 115

Similarly the bending transformation is determined using sixteen d.o.f. Thus the sixteen

bending nodal displacements are

T
{Wb} ={W1 W, W3 W, W,y Wy W Wy

W,

b W

5y2 M):yB M},y4 M)sxyl M’;xyZ M]’xy3 Mjaxyt (AlO)
The displacements are approximated using the cubic polynomial defined by Eq. (3.4).

Thus, the derivative expressions are given by

w,, =a, +2a,x+a,y+3a,x> +2a,xy+a,y* +3a,,x°y
+2a,xy* +a,y’ +3a,x*y* +2a,,xy° +3a,,x*y’ (A11)
w,, =a, +a,x+2a,y+agx’ +2a,xy+3a,y* +a, x>

+2a,x*y+3a,xy° +2a,x y+3a,x°y* +3a,,x°y’ (A12)
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W,,, = a5 +2a,% +2a,y +3a,,x° +4ap,xy

+3a,y” +6a,x°y +6a,,xy* +9a,,xy* +3a,,x° y*

(A13)

The nodal bending displacements are obtained by substituting the nodal coordinates into

Eq. (3.4) and Egs. (A4-A6). Thus the transverse displacements are given as
w (0,0,1)=q,
w,(a,,0t)=a, +a,a, +a,a’ +a,a’
wy(a,,b,,t)=a, +a,a, +a,b, +a,a’ +asa,b, +asb’
+aga,b? +a,b’ +a,a’b, +a,a’b?
2

3 31.2 3
+a,a,b] +a,ab; +aa.b;

w,(0.5,,t)=a, +a,b] +asb? +a,b]

Likewise, the slopes with respect to the x-axis are
Wi 0.0, t)= a,
w,,, (a,,0,t)=a, +2a,a, +3a,a’
w,,(a,.b,,t)=a, +2a,a, +asb, +3a,a’ +2a,a,b,
+a,b? +3a,,a’b, +2a,a,b) +a,;b]
2

21.2 3 3
+3ay,a,b; +2aa,b,; +aa,b,

3
W,,, (0.b,,t)=a, +asb, +a,b} +a;b;
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(A15)

(A16)

(A7)

(A18)

(A19)

(A20)

(A21)



The slopes with respect to the y-axis are

w,,, (0,0,t)=a,

W, (a,,0t)=a, +asa, +aza; +a,a;

W, (a,.b,,t)=a, +asa, +2asb, +aza’ +2a,a,b,
+3a,b? +ay,a +2a,a’b, +3a,,b}
+2a,,a’b, +3a,,a2b? +3a,,a’b}

W, . (0.,.1)=a, +2asb, +3a,,b}

The rotations about the z-axis are
W, (0.0,1)=a,

2
Wiy, (a,,0,1)=a; +2a,a, +3a,,a;

2
e

W, (a,,b,.1)=a; +2asa, +2a,b, +3a,a
2 2
+4a,a,b, +3a,;b; +6a,e.b,

+ 6a15aebj2 + 9amafbe2

Wi (0.B,,1) = a5 +2a,b, +3a,,b?

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

Equation (A14-22) may be expressed in matrix notion as {w, } = [T, ] {a} where [T, ] is

defined as
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APPENDIX B
COORDINATE TRANSFORMATION

B.1 Transformed Reduced Stiffness Matrix

The stress-strain relations for a thin orthotropic layer are of the form

o, O, O, 0 ldleg
0,r=(0, On 0 K& (BI1)
3V 0 0 Okllrn

where the subscripts / and 2 refer to material coordinate directions. The reduced stiffness

matrix, [Q] is a function of engineering constants as follows

E,

Q11 = (B2)
I-v,v,y
v, E
O =—"— (B3)
1-v,vy
E
Oy = 1 2 (B4)
ViaVa
Q66 =Gy, (B3)

The stresses in the material coordinate system can be transformed into the global x-y

coordinate system by

o, cos’d sin’@ —2sinbeosd |(o,
o,r=| sin’6 cos’6 2sinfeosf {0,
z,,) |sinbcosd —sinbeosd cos’d—sin’6 ||z,
O-X
=[T, (@)}, (B6)
T

xy
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The strain transformation can be expressed as

£, cos*6 sin*@ sinBeos8 [ ¢,
g, t=| sin’6 cos’8 —sinfeosf | ¢,
V) |—2sinbcos@ 2sinbeosd cos’0—sind ||y,
&
=[7, @)k &, (B7)
V3

where 0 is the lamination fiber angle with positive rotation from the x-axis with respect
to the principal material coordinate /-axis as shown in Figure B1. Combining Eqs. (B1-
B7) yields the laminate transformed reduced stiffness matrix

o, gu glz gxe o
Oy(= 9_12 gzz gzs €y (B8)

Ty O O e | Vo
where
[0]=1z, O [o]r, 6)] B9)
B.2 Transformation of Piezoelectric "d" Constants

Actuation strain shown in the stress-strain relations is proportional to the piezoelectric

d constants and are presented in matrix form

0 0 0 0 ds 0
[d]=|0 0 0 4, 0 0 (B10)
dy d, dy 0 0 0

This research assumes thin piezoelectric layers polarized in the 3-direction and isotropic

in the /- and 2-directions. Thus the piezoelectric constant matrix is reduced to
0
0 (B11)

o O O

0
[d]=| 0
ds, dy

The actuation strain may be represented as
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d31
{e,}=[d] {E} = E,qd,, (B12)
0

Transformation of the principal material coordinates of the d constants to the global

coordinates may be accomplished by utilizing the strain transformation

dx d31
dy =[Tg @)k ds, (B13)
d,, 0

Thus for the isotropic assumption of the piezoceramic layers,

d
d \=1d, (B14)
d
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Fig. B.1 Principle material coordinates
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APPENDIX C
ELECTROSTATICS

Cl1 Introduction

Electric charge establishes an electromagnetic field. =~ The strength of the
electromagnetic field is a function of the magnitude, location, velocity, and acceleration
of the charges present. An electrostatic field results from stationary charges, hence is a
function of position only. In the special case of electrostatics, note that the terminology is
modified by dropping magnetic from the root electromagnetic. This infers that magnetic
results from dynamic charge behavior. In essence, electric charges in motion (i.e. electric
current) produce a magnetic field.
C.2 Electrostatic Fields

Coulomb's Law established experimentally, that a force exist between two charged
bodies, which tend to repel or attract each other. The direction of the force depends on
whether both bodies have similar or dissimilar charges. If two small spherical bodies,
each of charge ¢; and ¢ respectively, are present in an infinite homogeneous insulating

medium separated by distance r, then Coulomb's force is expressed as

949>
" e (D

The direction of the force is along the line between the two charges, where € is called
the permittivity or dielectric constant of the medium. In free space or a vacuum, € is
defined as 60=8.854X10'12 Farad/meter, where the subscript o indicates free space. The
permittivity of other materials are referenced to the permittivity of free space through
their relative permittivity, that is €=€,€,. In the MKS system, the unit of charge was
previously defined as the coulomb (one ampere of current flowing for one second

transports one coulomb of charge). Thus in order to leave Maxwell's field equations
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independent of the constant 47T, the units of Coulomb's force law were rationalized by a
constant of 47T.

In the above example imagine that the g, charge is fixed and consider g; as being
available to move about, i.e. a test probe charge. As the test probe charge is located at
various positions near the fixed charge it experiences a force. The magnitude and
direction of the force depends on the location relative to the fixed charge. Hence
surrounding the fixed charge there exists an electric force field. This electric force field
is described to have a strength E, which has units of force per unit charge. The
magnitude of the force is given by Eq. (Cl) and the magnitude of the electric field

strength is

q
E=tmer ©2

Note that the magnitude of the force is directly proportional to the magnitude of the test
probe charge, however the electric field strength is defined as a force per unit charge thus
independent of the magnitude of the test probe charge. Hence if the magnitude of the test
charge approaches zero, the force diminishes; however the normalized force remains
constant. Thus the electric field resulting from a charge exists, regardless of the presence
of a test probe charge. In effect the test charge can be utilized to verify the existence of
an electric field, and abstractly, if any charge g exists, then an electric field exists. The

electric field around a point charge is a vector quantity and can be written as

q A
b= et ©3)

where I is a unit radial outward vector from charge g.
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C3 Electric Displacement

Equation (C3) indicates that the electric field is a function of the magnitude and
position of the charge and the permittivity material. It is desirable to introduce the
electric displacement or electric flux, that is independent of the material permittivity. The
electric flux is best described by the results of Faraday's famous experiment with
concentric spheres [16]. Faraday placed a metallic sphere with charge O inside of another
metallic sphere. Great care was taken to keep the spheres separated at all times. Then the
outer sphere was grounded to earth for a very short time and then again with great
diligence using insulating tools the inner sphere was removed. Once the outer sphere was
reassembled, the charge on it was measured. The charge on the outer sphere was found to
be equal and opposite in sign to the charge placed on the inner sphere. This experiment
was repeated for several sphere sizes and with several dielectric materials and the results
were always the same. Hence there is an electric flux or displacement through the
dielectric. The displacement being a function of the magnitude of charge and

independent of permittivity
¥Y=0 (C4)

Consider an isolated point charge far from any other particle. The electric displacement
density or electric displacement per unit area on any point of a sphere surrounding the

point charge is

p=-Y¥Y_-14 (C5)

The displacement density is a vector quantity with its direction outward normal to the

sphere
p=-"_¢ (C6)
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Upon examination of Eq. (A.3) and Eq. (A.6), D and E are related and can be written as

the electromagnetic constitutive relation

D=€cE (C7)
where the permittivity is a tensor for the most general anisotropic materials
E]l €12 613

€E=1€, €, €y (CS)
€; €, €5

C4 Potential Function

The electric field is a conservative force field. Hence there is no dissipation
mechanism and all energy must be stored in either potential or kinetic form. The work
done, on the system above, in moving the test probe charge around the fixed charge, i.e.

against the force F, can be calculated as

work =~ [ Far (C9)

As with any conservative force field an arbitrary reference may be chosen. As shown

above, infinity is commonly selected as the reference. Thus the work done on the test

probe charge is

work = — Eigﬂ—zzdr
TEF

_ 49 (C10)
47€R

The normalized work done on the test probe charge is defined as the electric potential at a

point due to the presence of charge g, hence

work q, (C11)

14 =
unit charge 47€R
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Note that potential is a scalar quantity. The potential has a unit of joule per coulomb
which is the MKS units for a volt. For electrostatics, the terms potential, potential
difference and voltage are synonymous. Another useful relationship is the differential
work or differential voltage required in moving a positive unit charge an infinitesimal

distance. For example, the differential work is
dW =dV =-E-ds (C12)

where dV can be expressed as VV - ds, thus E = —-VV and the electric field strength at any
point is simply the negative of the potential gradient at the point. If Eq. (C12) is
integrated the potential difference will become much clearer. For example, consider the

potential difference between two points ¢ and b as

AV =—| E-ds (C13)
[ar=-[

Thus the potential difference between point a and b is

n-n:fnm (C14)

C.5 Capacitance
The capacitance between two conductors is defined as the ratio of charge on the

conductors, to the voltage or potential difference between each of the conductors

C= (C15)

<

Note that the capacitance is defined irrespective of the size and shape or distance between
the conductors. Gauss's law can be used to verify that the total charge on one of the
conductors is indeed proportional to the potential difference, and the proportionality is

capacitance.
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C.6 Electrostatic Energy

When a capacitor is charged, a voltage or potential difference exists between the
conductors. As previously discussed, the voltage will establish a conservative electric
force field between the two conductors. Thus energy storage is present in a charged
capacitor, since no dissipation mechanism exists within a conservative force field. The
amount of energy stored, is simply the work required to charge the capacitor. Recall that
potential was defined as work done per unit charge in Eq.(C11), thus the differential work

1s

dW =Vdg (C16)
and the total work is computed as
g, O
w="[ 21dg==2— C17
[ ¢ ac €17

The stored energy of a charge capacitor can also be written as

U=%V2C (C18)

Another approach to visualize the energy stored or work done in charging a capacitor is to
consider the necessary energy required in establishing a charge distribution in space. If a
free space is considered, and N discrete charges are brought into a given volume, then the

work done or energy expended in locating the charges will be

N N g.q.
=—1—22q’q’ i j (C19)
87€e T =

=

If a continuous charge distribution is considered instead of discrete charges, Eq. (C19)

can be written in integral form as

pc(rl)pc(rZ)
W= 8”6 j j - d¥. d¥%, (C20)
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where g; and g; were replaced with volume charge densities p,(r)d% and p,(r,)d%

respectively, and R =|r, —r,|. Recall that potential is defined as work per unit charge in
Eq. (C11), so work done on the charge distribution can be written as the potential by

w
pc (r,)

J‘Pc (rz (C21)

V(r)=

47z€

Substituting Eq. (C21) into Eq. (C20) expresses the work necessary to create a continuous

charge distribution

W =% [y (r)aw (C22)

If the vector identity V-(VD)=VV-D+D-VV is applied to Eq. (C22) it may be re-

written as
=lijdV
2V
=Ly pap
2
ljv-(VD)—I)-VV]dV
2V
1
== Sj VD -da+— jD Ed¥ (C23)

For a piezoelectric generator, the externally applied voltage is zero and a mechanical

deformation or strain results in a Maxwell's self induced electric field. The electrical

energy density thus becomes

L D-Ea¥ (C24)
2 ¥
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This work formulation assumes that there is no free or space charge present within the

piezoceramic.
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APPENDIX D
PIEZOCERAMIC ADHESIVE

The adhesive used to bond the piezoceramic patch to the panel was Micro-
Measurements GA-2 strain gage adhesive system [23]. The GA-2 system is an epoxy
adhesive that is combined with the hardener 10-A. The adhesive is specified to have 10%
to 15% elongation capabilities after 40 hours of curing time at 210 C. It is recommended
that a clamping force of 5-20 psi be applied to the patch during the curing process to
assure a complete bond. Once the epoxy is mixed with the hardener the pot life is
approximately 15 minutes at 219 C. The adhesive is a dielectric which prohibits

electrical conduction between the piezoceramic and the plate.

113



APPENDIX E
CHARGE AMPLIFIER DATA

The charge amplifier used, model number 422M77, was provided by PCB
Piezotronics, Inc. [27]. The gain is fixed at 0.2537 mV/pC with a bias voltage of 11.09
V, a feedback capacitance of 4000 pF and a feedback resistance of 3x108 ohms.
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